Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
BMC Bioinformatics. 2009 Oct 1;10 Suppl 10(Suppl 10):S3. doi: 10.1186/1471-2105-10-S10-S3.
This paper summarises the lessons and experiences gained from a case study of the application of semantic web technologies to the integration of data from the bacterial species Francisella tularensis novicida (Fn). Fn data sources are disparate and heterogeneous, as multiple laboratories across the world, using multiple technologies, perform experiments to understand the mechanism of virulence. It is hard to integrate these data sources in a flexible manner that allows new experimental data to be added and compared when required.
Public domain data sources were combined in RDF. Using this connected graph of database cross references, we extended the annotations of an experimental data set by superimposing onto it the annotation graph. Identifiers used in the experimental data automatically resolved and the data acquired annotations in the rest of the RDF graph. This happened without the expensive manual annotation that would normally be required to produce these links. This graph of resolved identifiers was then used to combine two experimental data sets, a proteomics experiment and a transcriptomic experiment studying the mechanism of virulence through the comparison of wildtype Fn with an avirulent mutant strain.
We produced a graph of Fn cross references which enabled the combination of two experimental datasets. Through combination of these data we are able to perform queries that compare the results of the two experiments. We found that data are easily combined in RDF and that experimental results are easily compared when the data are integrated. We conclude that semantic data integration offers a convenient, simple and flexible solution to the integration of published and unpublished experimental data.
本文总结了应用语义 Web 技术整合弗氏志贺样杆菌 novicida (Fn) 数据的案例研究中的经验教训。Fn 数据源具有多样性和异质性,因为世界各地的多个实验室使用多种技术进行实验以了解毒力机制。很难以灵活的方式整合这些数据源,以便在需要时添加和比较新的实验数据。
公共领域数据源在 RDF 中组合。使用此数据库交叉引用的连接图,我们通过将注释图叠加在实验数据集的注释上来扩展实验数据集的注释。实验数据中使用的标识符自动解析,并在 RDF 图的其余部分获取注释。这是在通常需要进行这些链接的昂贵的手动注释的情况下发生的。然后,使用此解析标识符图来组合两个实验数据集,一个是蛋白质组学实验,另一个是通过比较野生型 Fn 与无毒突变株来研究毒力机制的转录组学实验。
我们生成了一个 Fn 交叉引用图,该图实现了两个实验数据集的组合。通过组合这些数据,我们能够执行比较两个实验结果的查询。我们发现,当数据被整合时,RDF 中很容易组合数据,并且很容易比较实验结果。我们得出结论,语义数据集成提供了一种方便、简单和灵活的解决方案,可用于整合已发表和未发表的实验数据。