Suppr超能文献

[小波分析及其在高光谱图像光谱去噪中的应用]

[Wavelet analysis and its application in denoising the spectrum of hyperspectral image].

作者信息

Zhou Dan, Wang Qin-Jun, Tian Qing-Jiu, Lin Qi-Zhong, Fu Wen-Xue

机构信息

Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, Beijing 100086, China.

出版信息

Guang Pu Xue Yu Guang Pu Fen Xi. 2009 Jul;29(7):1941-5.

Abstract

In order to remove the sawtoothed noise in the spectrum of hyperspectral remote sensing and improve the accuracy of information extraction using spectrum in the present research, the spectrum of vegetation in the USGS (United States Geological Survey) spectrum library was used to simulate the performance of wavelet denoising. These spectra were measured by a custom-modified and computer-controlled Beckman spectrometer at the USGS Denver Spectroscopy Lab. The wavelength accuracy is about 5 nm in the NIR and 2 nm in the visible. In the experiment, noise with signal to noise ratio (SNR) 30 was first added to the spectrum, and then removed by the wavelet denoising approach. For the purpose of finding the optimal parameters combinations, the SNR, mean squared error (MSE), spectral angle (SA) and integrated evaluation coefficient eta were used to evaluate the approach's denoising effects. Denoising effect is directly proportional to SNR, and inversely proportional to MSE, SA and the integrated evaluation coefficient eta. Denoising results show that the sawtoothed noise in noisy spectrum was basically eliminated, and the denoised spectrum basically coincides with the original spectrum, maintaining a good spectral characteristic of the curve. Evaluation results show that the optimal denoising can be achieved by firstly decomposing the noisy spectrum into 3-7 levels using db12, db10, sym9 and sym6 wavelets, then processing the wavelet transform coefficients by soft-threshold functions, and finally estimating the thresholds by heursure threshold selection rule and rescaling using a single estimation of level noise based on first-level coefficients. However, this approach depends on the noise level, which means that for different noise level the optimal parameters combination is also diverse.

摘要

为了去除高光谱遥感光谱中的锯齿状噪声并提高利用光谱进行信息提取的准确性,本研究利用美国地质调查局(USGS)光谱库中的植被光谱来模拟小波去噪的性能。这些光谱是在美国地质调查局丹佛光谱实验室通过定制改装的计算机控制的贝克曼光谱仪测量的。近红外波段的波长精度约为5纳米,可见光波段约为2纳米。在实验中,首先向光谱中添加信噪比(SNR)为30的噪声,然后通过小波去噪方法将其去除。为了找到最优参数组合,使用信噪比、均方误差(MSE)、光谱角(SA)和综合评价系数eta来评估该方法的去噪效果。去噪效果与信噪比成正比,与均方误差、光谱角和综合评价系数eta成反比。去噪结果表明,噪声光谱中的锯齿状噪声基本被消除,去噪后的光谱与原始光谱基本重合,保持了良好的光谱曲线特征。评价结果表明,通过首先使用db12、db10、sym9和sym6小波将噪声光谱分解为3 - 7层,然后通过软阈值函数处理小波变换系数,最后通过heursure阈值选择规则估计阈值并基于一级系数使用单级噪声估计进行重新缩放,可以实现最优去噪。然而,这种方法依赖于噪声水平,这意味着对于不同的噪声水平,最优参数组合也不同。

相似文献

2
[Hyperspectral imagery denoising method based on wavelets].
Guang Pu Xue Yu Guang Pu Fen Xi. 2009 Jul;29(7):1954-7.
5
[A novel analyzing method for the signal denoising of DNA sequencing].
Guang Pu Xue Yu Guang Pu Fen Xi. 2008 May;28(5):1126-9.
6
Selection of mother wavelet and denoising algorithm for analysis of foetal phonocardiographic signals.
J Med Eng Technol. 2009;33(6):442-8. doi: 10.1080/03091900902952618.
8
Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing.
IEEE Trans Med Imaging. 2004 Mar;23(3):374-87. doi: 10.1109/TMI.2004.824234.
9
[A study of Raman spectra denoising based on empirical mode decomposition].
Guang Pu Xue Yu Guang Pu Fen Xi. 2009 Jan;29(1):142-5.
10
[A method for auto-extraction of spectral lines based on sparse representation].
Guang Pu Xue Yu Guang Pu Fen Xi. 2009 Jul;29(7):2010-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验