Suppr超能文献

利用4D QSAR分析进行片螺素对人激素依赖性T47D乳腺癌细胞细胞毒性的3D药效团映射。

3D pharmacophore mapping using 4D QSAR analysis for the cytotoxicity of lamellarins against human hormone-dependent T47D breast cancer cells.

作者信息

Thipnate Poonsiri, Liu Jianzhong, Hannongbua Supa, Hopfinger A J

机构信息

Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.

出版信息

J Chem Inf Model. 2009 Oct;49(10):2312-22. doi: 10.1021/ci9002427.

Abstract

4D quantitative structure-activity relationship (QSAR) and 3D pharmacophore models were built and investigated for cytotoxicity using a training set of 25 lamellarins against human hormone dependent T47D breast cancer cells. Receptor-independent (RI) 4D QSAR models were first constructed from the exploration of eight possible receptor-binding alignments for the entire training set. Since the training set is small (25 compounds), the generality of the 4D QSAR paradigm was then exploited to devise a strategy to maximize the extraction of binding information from the training set and to also permit virtual screening of diverse lamellarin chemistry. 4D QSAR models were sought for only six of the most potent lamellarins of the training set as well as another subset composed of lamellarins with constrained ranges in molecular weight and lipophilicity. This overall modeling strategy has permitted maximizing 3D pharmacophore information from this small set of structurally complex lamellarins that can be used to drive future analog synthesis and the selection of alternate scaffolds. Overall, it was found that the formation of an intermolecular hydrogen bond and the hydrophobic interactions for substituents on the E ring most modulate the cytotoxicity against T47D breast cancer cells. Hydrophobic substitutions on the F-ring can also enhance cytotoxic potency. A complementary high-throughput virtual screen to the 3D pharmacophore models, a 4D fingerprint QSAR model, was constructed using absolute molecular similarity. This 4D fingerprint virtual high-throughput screen permits a larger range of chemistry diversity to be assayed than with the 4D QSAR models. The optimized 4D QSAR 3D pharmacophore model has a leave-one-out cross-correlation value of xv-r2 = 0.947, while the optimized 4D fingerprint virtual screening model has a value of xv-r2 = 0.719. This work reveals that it is possible to develop significant QSAR, 3D pharmacophore, and virtual screening models for a small set of lamellarins showing cytotoxic behavior in breast cancer screens that can guide future drug development based upon lamellarin chemistry.

摘要

利用25种片螺素针对人激素依赖性T47D乳腺癌细胞的训练集,构建并研究了4D定量构效关系(QSAR)和3D药效团模型以评估细胞毒性。首先通过探索整个训练集的八种可能的受体结合比对,构建了与受体无关(RI)的4D QSAR模型。由于训练集较小(25种化合物),因此利用4D QSAR范式的通用性来设计一种策略,以最大限度地从训练集中提取结合信息,并允许对不同的片螺素化学结构进行虚拟筛选。仅针对训练集中六种最有效的片螺素以及另一个由分子量和亲脂性范围受限的片螺素组成的子集寻找4D QSAR模型。这种整体建模策略能够从这一小组结构复杂的片螺素中最大限度地获取3D药效团信息,可用于推动未来类似物的合成以及替代支架的选择。总体而言,发现分子间氢键的形成以及E环上取代基的疏水相互作用对T47D乳腺癌细胞的细胞毒性影响最大。F环上的疏水取代也可增强细胞毒性效力。使用绝对分子相似性构建了一个与3D药效团模型互补的高通量虚拟筛选模型——4D指纹QSAR模型。与4D QSAR模型相比,这种4D指纹虚拟高通量筛选能够检测更大范围的化学多样性。优化后的4D QSAR 3D药效团模型的留一法交叉相关值为xv-r2 = 0.947,而优化后的4D指纹虚拟筛选模型的值为xv-r2 = 0.719。这项工作表明,对于一小部分在乳腺癌筛选中表现出细胞毒性行为的片螺素,有可能开发出有意义的QSAR、3D药效团和虚拟筛选模型,这些模型可基于片螺素化学指导未来的药物开发。

相似文献

本文引用的文献

6
QSAR analyses of skin penetration enhancers.皮肤渗透促进剂的定量构效关系分析
J Chem Inf Model. 2007 May-Jun;47(3):1130-49. doi: 10.1021/ci700051e. Epub 2007 May 2.
10
Prediction of plasma protein binding of drugs using Kier-Hall valence connectivity indices and 4D-fingerprint molecular similarity analyses.
J Comput Aided Mol Des. 2005 Aug;19(8):567-83. doi: 10.1007/s10822-005-9012-4. Epub 2005 Nov 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验