Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575.
J Biol Chem. 2009 Dec 18;284(51):35896-905. doi: 10.1074/jbc.M109.051581.
The DNA polymerase processivity factor of the Epstein-Barr virus, BMRF1, associates with the polymerase catalytic subunit, BALF5, to enhance the polymerase processivity and exonuclease activities of the holoenzyme. In this study, the crystal structure of C-terminally truncated BMRF1 (BMRF1-DeltaC) was solved in an oligomeric state. The molecular structure of BMRF1-DeltaC shares structural similarity with other processivity factors, such as herpes simplex virus UL42, cytomegalovirus UL44, and human proliferating cell nuclear antigen. However, the oligomerization architectures of these proteins range from a monomer to a trimer. PAGE and mutational analyses indicated that BMRF1-DeltaC, like UL44, forms a C-shaped head-to-head dimer. DNA binding assays suggested that basic amino acid residues on the concave surface of the C-shaped dimer play an important role in interactions with DNA. The C95E mutant, which disrupts dimer formation, lacked DNA binding activity, indicating that dimer formation is required for DNA binding. These characteristics are similar to those of another dimeric viral processivity factor, UL44. Although the R87E and H141F mutants of BMRF1-DeltaC exhibited dramatically reduced polymerase processivity, they were still able to bind DNA and to dimerize. These amino acid residues are located near the dimer interface, suggesting that BMRF1-DeltaC associates with the catalytic subunit BALF5 around the dimer interface. Consequently, the monomeric form of BMRF1-DeltaC probably binds to BALF5, because the steric consequences would prevent the maintenance of the dimeric form. A distinctive feature of BMRF1-DeltaC is that the dimeric and monomeric forms might be utilized for the DNA binding and replication processes, respectively.
Epstein-Barr 病毒的 DNA 聚合酶持续合成因子 BMRF1 与聚合酶催化亚基 BALF5 结合,以增强全酶的聚合酶持续合成和核酸外切酶活性。在这项研究中,解决了 C 端截断的 BMRF1(BMRF1-DeltaC)的晶体结构处于聚合状态。BMRF1-DeltaC 的分子结构与其他持续合成因子具有结构相似性,例如单纯疱疹病毒 UL42、巨细胞病毒 UL44 和人增殖细胞核抗原。然而,这些蛋白质的聚合架构范围从单体到三聚体。PAGE 和突变分析表明,BMRF1-DeltaC 与 UL44 一样,形成 C 形的头对头二聚体。DNA 结合测定表明,C 形二聚体凹面的碱性氨基酸残基在与 DNA 的相互作用中起重要作用。破坏二聚体形成的 C95E 突变体缺乏 DNA 结合活性,表明二聚体形成是 DNA 结合所必需的。这些特征与另一种二聚体病毒持续合成因子 UL44 相似。尽管 BMRF1-DeltaC 的 R87E 和 H141F 突变体表现出明显降低的聚合酶持续合成活性,但它们仍然能够结合 DNA 并形成二聚体。这些氨基酸残基位于二聚体界面附近,表明 BMRF1-DeltaC 在二聚体界面附近与催化亚基 BALF5 结合。因此,BMRF1-DeltaC 的单体形式可能与 BALF5 结合,因为空间位阻会阻止二聚体形式的维持。BMRF1-DeltaC 的一个显著特征是二聚体和单体形式可能分别用于 DNA 结合和复制过程。