Suppr超能文献

与乳腺癌风险密切相关的新型乳腺组织特征。

Novel breast tissue feature strongly associated with risk of breast cancer.

作者信息

McKian Kevin P, Reynolds Carol A, Visscher Daniel W, Nassar Aziza, Radisky Derek C, Vierkant Robert A, Degnim Amy C, Boughey Judy C, Ghosh Karthik, Anderson Stephanie S, Minot Douglas, Caudill Jill L, Vachon Celine M, Frost Marlene H, Pankratz V Shane, Hartmann Lynn C

机构信息

Department of Oncology, Mayo Clinic Cancer Center, Mayo Graduate School of Medical Education, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.

出版信息

J Clin Oncol. 2009 Dec 10;27(35):5893-8. doi: 10.1200/JCO.2008.21.5079. Epub 2009 Oct 5.

Abstract

PURPOSE

Accurate, individualized risk prediction for breast cancer is lacking. Tissue-based features may help to stratify women into different risk levels. Breast lobules are the anatomic sites of origin of breast cancer. As women age, these lobular structures should regress, which results in reduced breast cancer risk. However, this does not occur in all women.

METHODS

We have quantified the extent of lobule regression on a benign breast biopsy in 85 patients who developed breast cancer and 142 age-matched controls from the Mayo Benign Breast Disease Cohort, by determining number of acini per lobule and lobular area. We also calculated Gail model 5-year predicted risks for these women.

RESULTS

There is a step-wise increase in breast cancer risk with increasing numbers of acini per lobule (P = .0004). Adjusting for Gail model score, parity, histology, and family history did not attenuate this association. Lobular area was similarly associated with risk. The Gail model estimates were associated with risk of breast cancer (P = .03). We examined the individual accuracy of these measures using the concordance (c) statistic. The Gail model c statistic was 0.60 (95% CI, 0.50 to 0.70); the acinar count c statistic was 0.65 (95% CI, 0.54 to 0.75). Combining acinar count and lobular area, the c statistic was 0.68 (95% CI, 0.58 to 0.78). Adding the Gail model to these measures did not improve the c statistic.

CONCLUSION

Novel, tissue-based features that reflect the status of a woman's normal breast lobules are associated with breast cancer risk. These features may offer a novel strategy for risk prediction.

摘要

目的

目前缺乏针对乳腺癌的准确、个体化风险预测。基于组织的特征可能有助于将女性分层为不同的风险水平。乳腺小叶是乳腺癌的解剖学起源部位。随着女性年龄增长,这些小叶结构应会退化,从而降低乳腺癌风险。然而,并非所有女性都会出现这种情况。

方法

我们通过确定每个小叶的腺泡数量和小叶面积,对梅奥良性乳腺疾病队列中85例患乳腺癌的患者以及142例年龄匹配的对照者的良性乳腺活检样本中的小叶退化程度进行了量化。我们还计算了这些女性的盖尔模型5年预测风险。

结果

随着每个小叶腺泡数量的增加,乳腺癌风险呈逐步上升趋势(P = 0.0004)。对盖尔模型评分、产次、组织学和家族史进行调整后,这种关联并未减弱。小叶面积与风险也有类似关联。盖尔模型估计值与乳腺癌风险相关(P = 0.03)。我们使用一致性(c)统计量检查了这些指标的个体准确性。盖尔模型的c统计量为0.60(95%可信区间,0.50至0.70);腺泡计数的c统计量为0.65(95%可信区间,0.54至0.75)。将腺泡计数和小叶面积相结合,c统计量为0.68(95%可信区间,0.58至0.78)。将盖尔模型添加到这些指标中并未改善c统计量。

结论

反映女性正常乳腺小叶状态的基于组织的新特征与乳腺癌风险相关。这些特征可能为风险预测提供一种新策略。

相似文献

引用本文的文献

4
Associations of Stem Cell Markers with Lobular Involution in Benign Breast Tissue.干细胞标志物与良性乳腺组织小叶退化的关联。
Cancer Epidemiol Biomarkers Prev. 2025 Aug 1;34(8):1314-1321. doi: 10.1158/1055-9965.EPI-25-0097.
5
Relationship between breast tissue involution and breast cancer.乳腺组织退化与乳腺癌之间的关系。
Front Oncol. 2025 Apr 7;15:1420350. doi: 10.3389/fonc.2025.1420350. eCollection 2025.

本文引用的文献

2
Lobular involution: localized phenomenon or field effect?小叶退化:局部现象还是场效应?
Breast Cancer Res Treat. 2009 Sep;117(1):193-6. doi: 10.1007/s10549-008-0082-6. Epub 2008 Jul 1.
5
Age-related lobular involution and risk of breast cancer.年龄相关的小叶退化与乳腺癌风险
J Natl Cancer Inst. 2006 Nov 15;98(22):1600-7. doi: 10.1093/jnci/djj439.
6
7
Assessing breast cancer risk: evolution of the Gail Model.评估乳腺癌风险:盖尔模型的演变
J Natl Cancer Inst. 2006 Sep 6;98(17):1172-3. doi: 10.1093/jnci/djj365.
8
Benign breast disorders.良性乳腺疾病
N Engl J Med. 2005 Jul 21;353(3):275-85. doi: 10.1056/NEJMra035692.
9
Benign breast disease and the risk of breast cancer.乳腺良性疾病与乳腺癌风险
N Engl J Med. 2005 Jul 21;353(3):229-37. doi: 10.1056/NEJMoa044383.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验