INSERM U637, Université Montpellier 1 & 2, Montpellier, France.
PLoS One. 2009 Oct 7;4(10):e7360. doi: 10.1371/journal.pone.0007360.
Despite increasing evidence for the presence of voltage-gated Na(+) channels (Na(v)) isoforms and measurements of Na(v) channel currents with the patch-clamp technique in arterial myocytes, no information is available to date as to whether or not Na(v) channels play a functional role in arteries. The aim of the present work was to look for a physiological role of Na(v) channels in the control of rat aortic contraction.
METHODOLOGY/PRINCIPAL FINDINGS: Na(v) channels were detected in the aortic media by Western blot analysis and double immunofluorescence labeling for Na(v) channels and smooth muscle alpha-actin using specific antibodies. In parallel, using real time RT-PCR, we identified three Na(v) transcripts: Na(v)1.2, Na(v)1.3, and Na(v)1.5. Only the Na(v)1.2 isoform was found in the intact media and in freshly isolated myocytes excluding contamination by other cell types. Using the specific Na(v) channel agonist veratridine and antagonist tetrodotoxin (TTX), we unmasked a contribution of these channels in the response to the depolarizing agent KCl on rat aortic isometric tension recorded from endothelium-denuded aortic rings. Experimental conditions excluded a contribution of Na(v) channels from the perivascular sympathetic nerve terminals. Addition of low concentrations of KCl (2-10 mM), which induced moderate membrane depolarization (e.g., from -55.9+/-1.4 mV to -45.9+/-1.2 mV at 10 mmol/L as measured with microelectrodes), triggered a contraction potentiated by veratridine (100 microM) and blocked by TTX (1 microM). KB-R7943, an inhibitor of the reverse mode of the Na(+)/Ca(2+) exchanger, mimicked the effect of TTX and had no additive effect in presence of TTX.
CONCLUSIONS/SIGNIFICANCE: These results define a new role for Na(v) channels in arterial physiology, and suggest that the TTX-sensitive Na(v)1.2 isoform, together with the Na(+)/Ca(2+) exchanger, contributes to the contractile response of aortic myocytes at physiological range of membrane depolarization.
尽管已有越来越多的证据表明电压门控钠离子通道(Na(v))同工型的存在,并使用膜片钳技术测量了动脉肌细胞中的 Na(v)通道电流,但迄今为止,尚无关于 Na(v)通道是否在动脉中发挥功能作用的信息。本研究旨在探讨 Na(v)通道在大鼠主动脉收缩中的生理作用。
方法/主要发现:通过 Western blot 分析和使用特异性抗体进行 Na(v)通道和平滑肌α-肌动蛋白的双重免疫荧光标记,在主动脉中层检测到 Na(v)通道。同时,通过实时 RT-PCR,我们鉴定了三种 Na(v)转录本:Na(v)1.2、Na(v)1.3 和 Na(v)1.5。只有 Na(v)1.2 同工型存在于完整的中层和新鲜分离的肌细胞中,排除了其他细胞类型的污染。使用特异性 Na(v)通道激动剂维拉帕米和拮抗剂河豚毒素(TTX),我们揭示了这些通道在去内皮主动脉环记录的等长张力对去极化剂 KCl 反应中的作用。实验条件排除了血管周围交感神经末梢的 Na(v)通道的贡献。添加低浓度的 KCl(2-10 mM),可引起适度的膜去极化(例如,在 10 mmol/L 时,用微电极测量的从 -55.9+/-1.4 mV 到 -45.9+/-1.2 mV),可触发维拉帕米(100 μM)增强的收缩,并被 TTX(1 μM)阻断。KB-R7943,是钠/钙交换体反向模式的抑制剂,模拟了 TTX 的作用,并且在 TTX 存在时没有附加效应。
这些结果定义了 Na(v)通道在动脉生理学中的新作用,并表明 TTX 敏感的 Na(v)1.2 同工型与钠/钙交换体一起,有助于在生理范围的膜去极化时主动脉肌细胞的收缩反应。