Suppr超能文献

利用虚拟患者提高评估水平。

Improving assessment with virtual patients.

机构信息

St. George's University of London, UK.

出版信息

Med Teach. 2009 Aug;31(8):759-63. doi: 10.1080/01421590903134152.

Abstract

Assessments should accurately predict future performance in a wide variety of settings yet be feasible to conduct. In medical education a robust and comprehensive system of assessment is essential to protect the public from inadequate professionals. The parameters for devising such an assessment are well-defined, and good practice for writing examinations well-established. However even excellent written assessments are limited in their predictive validity, and limited in sampling, face and construct validity. The increasing availability and power of computing has led to growing interest in computer simulations for use in examinations, creating assessment virtual patients (AVPs). They can potentially test knowledge and data interpretation, incorporate images, sound or video and test decision making. Such AVPs could represent the most comprehensive, integrated assessment possible that is both objective and feasible. This article focuses on AVP design, distinguishing between linear and branched models, choice and consequence driven designs. It reviews the use of AVPs in the context of assessment theory. It presents different AVP designs discussing their benefits and problems. AVPs can become valuable components in high stakes medical exams, particularly in later years of courses. However this requires application of established assessment principles to AVP design.

摘要

评估应该能够准确预测在各种环境下的未来表现,并且可行。在医学教育中,建立一个健全和全面的评估体系对于保护公众免受不合格专业人员的影响至关重要。设计这种评估的参数已经明确定义,编写考试的良好实践也已经确立。然而,即使是优秀的书面评估在其预测有效性和采样、表面和结构有效性方面也存在局限性。计算能力的不断提高和增强,导致人们对计算机模拟在考试中的应用越来越感兴趣,从而创造了评估虚拟患者(AVP)。它们可以潜在地测试知识和数据解释、整合图像、声音或视频,并测试决策能力。这样的 AVP 可以代表最全面、最综合的评估,而且是客观和可行的。本文重点介绍 AVP 的设计,区分线性和分支模型、选择和后果驱动的设计。它回顾了在评估理论背景下使用 AVP 的情况。它介绍了不同的 AVP 设计,讨论了它们的优缺点。AVP 可以成为高风险医学考试的有价值的组成部分,特别是在课程的后期。然而,这需要将既定的评估原则应用于 AVP 的设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验