Suppr超能文献

磷酸肌醇 3-激酶的 p85β 调节亚基在 B 细胞中具有独特和冗余的功能。

The p85beta regulatory subunit of phosphoinositide 3-kinase has unique and redundant functions in B cells.

机构信息

Department of Molecular Biology and Biochemistry, and Center Institute for Immunology, University of California, Irvine, Irvine, CA 92697-3900, USA.

出版信息

Autoimmunity. 2009 Aug;42(5):447-58. doi: 10.1080/08916930902911746.

Abstract

Phosphoinositide kinase (PI3K) is activated by various receptors on lymphocytes and regulates development, activation, and tolerance. Genetic ablation of PI3K function in T cells leads to the appearance of autoimmune disorders. In B cells, loss of the class IA regulatory subunit p85alpha causes a partial defect in B cell development and proliferation, whereas loss of p85beta alone causes no apparent changes in B cell function. Here we investigate further the consequences of p85beta deletion in B cells, in the presence or absence of p85alpha. We demonstrate that p85beta partially compensates for loss of p85alpha in B cell development and peripheral survival, with greater defects observed when both isoforms are absent. BCR-mediated AKT phosphorylation is partially reduced in p85alpha-deficient B cells and further diminished with concomitant loss of p85beta. Unexpectedly, loss of p85beta results in increased BCR-mediated proliferation and ERK phosphorylation. These results indicate that the p85beta regulatory isoform has partially overlapping functions with p85alpha in B cells as well as a unique role in opposing BCR responses.

摘要

磷酸肌醇激酶(PI3K)被淋巴细胞上的各种受体激活,并调节其发育、激活和耐受。T 细胞中 PI3K 功能的遗传缺失会导致自身免疫疾病的出现。在 B 细胞中,IA 类调节亚基 p85alpha 的缺失会导致 B 细胞发育和增殖的部分缺陷,而单独缺失 p85beta 则不会导致 B 细胞功能的明显变化。在这里,我们进一步研究了在存在或不存在 p85alpha 的情况下,p85beta 在 B 细胞中的缺失所带来的后果。我们证明,p85beta 在 B 细胞发育和外周存活方面部分补偿了 p85alpha 的缺失,当两种同工酶都缺失时,观察到的缺陷更大。在 p85alpha 缺陷型 B 细胞中,BCR 介导的 AKT 磷酸化部分减少,而伴随 p85beta 的缺失则进一步减少。出乎意料的是,p85beta 的缺失导致 BCR 介导的增殖和 ERK 磷酸化增加。这些结果表明,p85beta 调节同工酶在 B 细胞中与 p85alpha 具有部分重叠的功能,并且在拮抗 BCR 反应中具有独特的作用。

相似文献

3
Role of phosphoinositide 3-kinase regulatory isoforms in development and actin rearrangement.
Mol Cell Biol. 2005 Apr;25(7):2593-606. doi: 10.1128/MCB.25.7.2593-2606.2005.
4
Increased insulin sensitivity in mice lacking p85beta subunit of phosphoinositide 3-kinase.
Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):419-24. doi: 10.1073/pnas.012581799. Epub 2001 Dec 18.
5
Enhanced T cell proliferation in mice lacking the p85beta subunit of phosphoinositide 3-kinase.
J Immunol. 2004 Jun 1;172(11):6615-25. doi: 10.4049/jimmunol.172.11.6615.
6
Class IA phosphoinositide 3-kinase modulates basal lymphocyte motility in the lymph node.
J Immunol. 2007 Aug 15;179(4):2261-9. doi: 10.4049/jimmunol.179.4.2261.
7
Divergent roles of the regulatory subunits of class IA PI3K.
Front Endocrinol (Lausanne). 2024 Jan 22;14:1152579. doi: 10.3389/fendo.2023.1152579. eCollection 2023.
8
p85beta phosphoinositide 3-kinase regulates CD28 coreceptor function.
Blood. 2009 Apr 2;113(14):3198-208. doi: 10.1182/blood-2008-04-152942. Epub 2009 Feb 3.
9
T-cell function is partially maintained in the absence of class IA phosphoinositide 3-kinase signaling.
Blood. 2007 Apr 1;109(7):2894-902. doi: 10.1182/blood-2006-07-038620.
10
Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85alpha.
Science. 1999 Jan 15;283(5400):393-7. doi: 10.1126/science.283.5400.393.

引用本文的文献

1
Divergent roles of the regulatory subunits of class IA PI3K.
Front Endocrinol (Lausanne). 2024 Jan 22;14:1152579. doi: 10.3389/fendo.2023.1152579. eCollection 2023.
4
Quantitation of class IA PI3Ks in mice reveals p110-free-p85s and isoform-selective subunit associations and recruitment to receptors.
Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):12176-12181. doi: 10.1073/pnas.1803446115. Epub 2018 Nov 15.
5
Isoform-specific activities of the regulatory subunits of phosphatidylinositol 3-kinases - potentially novel therapeutic targets.
Expert Opin Ther Targets. 2018 Oct;22(10):869-877. doi: 10.1080/14728222.2018.1522302. Epub 2018 Sep 24.
6
Phosphoinositides: tiny lipids with giant impact on cell regulation.
Physiol Rev. 2013 Jul;93(3):1019-137. doi: 10.1152/physrev.00028.2012.
7
Emergence of the PI3-kinase pathway as a central modulator of normal and aberrant B cell differentiation.
Curr Opin Immunol. 2011 Apr;23(2):178-83. doi: 10.1016/j.coi.2011.01.001. Epub 2011 Feb 1.
9
PI3Ks in lymphocyte signaling and development.
Curr Top Microbiol Immunol. 2010;346:57-85. doi: 10.1007/82_2010_45.
10
Foxo1 regulates marginal zone B-cell development.
Eur J Immunol. 2010 Jul;40(7):1890-6. doi: 10.1002/eji.200939817.

本文引用的文献

3
Class IA phosphoinositide 3-kinase modulates basal lymphocyte motility in the lymph node.
J Immunol. 2007 Aug 15;179(4):2261-9. doi: 10.4049/jimmunol.179.4.2261.
5
PI3K delta and PI3K gamma: partners in crime in inflammation in rheumatoid arthritis and beyond?
Nat Rev Immunol. 2007 Mar;7(3):191-201. doi: 10.1038/nri2036. Epub 2007 Feb 9.
7
Antigen receptor signalling: a distinctive role for the p110delta isoform of PI3K.
Trends Immunol. 2007 Feb;28(2):80-7. doi: 10.1016/j.it.2006.12.007. Epub 2007 Jan 5.
8
T-cell function is partially maintained in the absence of class IA phosphoinositide 3-kinase signaling.
Blood. 2007 Apr 1;109(7):2894-902. doi: 10.1182/blood-2006-07-038620.
10
PI3Kgamma inhibition: towards an 'aspirin of the 21st century'?
Nat Rev Drug Discov. 2006 Nov;5(11):903-18. doi: 10.1038/nrd2145. Epub 2006 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验