The Signaling Department, The Babraham Institute, CB22 3AT Cambridge, United Kingdom.
Department of Chemistry, University of Oxford, OX1 3QZ Oxford, United Kingdom.
Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):12176-12181. doi: 10.1073/pnas.1803446115. Epub 2018 Nov 15.
Class IA PI3Ks have many roles in health and disease. The rules that govern intersubunit and receptor associations, however, remain unclear. We engineered mouse lines in which individual endogenous class IA PI3K subunits were C-terminally tagged with 17aa that could be biotinylated in vivo. Using these tools we quantified PI3K subunits in streptavidin or PDGFR pull-downs and cell lysates. This revealed that p85α and β bound equivalently to p110α or p110β but p85α bound preferentially to p110δ. p85s were found in molar-excess over p110s in a number of contexts including MEFs (p85β, 20%) and liver (p85α, 30%). In serum-starved MEFs, p110-free-p85s were preferentially, compared with heterodimeric p85s, bound to PDGFRs, consistent with in vitro assays that demonstrated they bound PDGFR-based tyrosine-phosphorylated peptides with higher affinity and co-operativity; suggesting they may act to tune a PI3K activation threshold. p110α-heterodimers were recruited 5-6× more efficiently than p110β-heterodimers to activated PDGFRs in MEFs or to PDGFR-based tyrosine-phosphorylated peptides in MEF-lysates. This suggests that PI3Kα has a higher affinity for relevant tyrosine-phosphorylated motifs than PI3Kβ. Nevertheless, PI3Kβ contributes substantially to acute PDGF-stimulation of PIP and PKB in MEFs because it is synergistically, and possibly sequentially, activated by receptor-recruitment and small GTPases (Rac/CDC42) via its RBD, whereas parallel activation of PI3Kα is independent of its RBD. These results begin to provide molecular clarity to the rules of engagement between class IA PI3K subunits in vivo and past work describing "excess p85," p85α as a tumor suppressor, and differential receptor activation of PI3Kα and PI3Kβ.
IA 类 PI3K 在健康和疾病中具有多种作用。然而,控制亚基间和受体结合的规则仍不清楚。我们构建了内源 IA 类 PI3K 亚基 C 末端带有 17 个氨基酸标签的小鼠系,这些标签可在体内生物素化。利用这些工具,我们对链霉亲和素或 PDGFR 下拉物和细胞裂解物中的 PI3K 亚基进行了定量分析。结果表明,p85α 和 p85β 与 p110α 或 p110β 结合能力相当,但 p85α 优先与 p110δ 结合。在许多情况下,包括 MEFs(p85β,20%)和肝脏(p85α,30%)中,p85 的摩尔数超过了 p110。在血清饥饿的 MEFs 中,与异源二聚体 p85 相比,无 p110 的 p85 优先与 PDGFR 结合,这与体外实验一致,体外实验表明它们与基于 PDGFR 的酪氨酸磷酸化肽结合具有更高的亲和力和协同性;表明它们可能起到调节 PI3K 激活阈值的作用。在 MEFs 中,p110α 异源二聚体比 p110β 异源二聚体更有效地被激活的 PDGFR 招募 5-6 倍,或在 MEF 裂解物中被基于 PDGFR 的酪氨酸磷酸化肽招募。这表明 PI3Kα 与相关的酪氨酸磷酸化基序的亲和力高于 PI3Kβ。然而,PI3Kβ 对急性 PDGF 刺激 MEFs 中的 PIP 和 PKB 有很大贡献,因为它通过其 RBD 与受体募集和小 GTPases(Rac/CDC42)协同且可能连续地被激活,而 PI3Kα 的平行激活则不依赖于其 RBD。这些结果开始为体内 IA 类 PI3K 亚基之间的结合规则提供分子上的解释,并解释了过去关于“多余的 p85”、p85α 作为肿瘤抑制因子以及 PI3Kα 和 PI3Kβ 对受体的不同激活的工作。