Suppr超能文献

鉴定和描述丝状肌动蛋白中多个相似配体结合重复序列:对丝状肌动蛋白介导的受体聚集和串扰的影响。

Identification and characterization of multiple similar ligand-binding repeats in filamin: implication on filamin-mediated receptor clustering and cross-talk.

机构信息

Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 , USA.

出版信息

J Biol Chem. 2009 Dec 11;284(50):35113-21. doi: 10.1074/jbc.M109.060954. Epub 2009 Oct 14.

Abstract

The actin-binding protein filamin links membrane receptors to the underlying cytoskeleton. The cytoplasmic domains of these membrane receptors have been shown to bind to various filamin immunoglobulin repeats. Notably, among 24 human filamin repeats, repeat 17 was reported to specifically bind to platelet receptor glycoprotein Ibalpha and repeat 21 to integrins. However, a complete sequence alignment of all 24 human filamin repeats reveals that repeats 17 and 21 actually belong to a distinct filamin repeat subgroup (containing repeats 4, 9, 12, 17, 19, 21, and 23) that shares a conserved ligand-binding site. Using isothermal calorimetry and NMR analyses, we show that all repeats in this subgroup can actually bind glycoprotein Ibalpha, integrins, and a cytoskeleton regulator migfilin in similar manners. These data provide a new view on the ligand specificity of the filamin repeats. They also suggest a multiple ligand binding mechanism where similar repeats within a filamin monomer may promote receptor clustering or receptor cross-talking for regulation of the cytoskeleton organization and diverse filamin-mediated cellular activities.

摘要

肌动蛋白结合蛋白细丝蛋白将膜受体与下面的细胞骨架连接起来。这些膜受体的细胞质结构域已被证明与各种细丝蛋白免疫球蛋白重复序列结合。值得注意的是,在 24 个人类细丝蛋白重复序列中,报道重复 17 专门结合血小板受体糖蛋白 Ibα,重复 21 结合整合素。然而,对所有 24 个人类细丝蛋白重复序列的完整序列比对表明,重复 17 和 21 实际上属于一个独特的细丝蛋白重复亚群(包含重复 4、9、12、17、19、21 和 23),它们共享一个保守的配体结合位点。通过使用等温滴定量热法和 NMR 分析,我们表明该亚群中的所有重复实际上可以以相似的方式结合糖蛋白 Ibα、整合素和细胞骨架调节剂 migfilin。这些数据为细丝蛋白重复序列的配体特异性提供了新的视角。它们还表明,在一个细丝蛋白单体中,类似的重复可能促进受体聚集或受体串扰,以调节细胞骨架组织和多种细丝蛋白介导的细胞活动。

相似文献

2
Evidence for multisite ligand binding and stretching of filamin by integrin and migfilin.
Biochemistry. 2011 May 24;50(20):4229-31. doi: 10.1021/bi2003229. Epub 2011 Apr 27.
3
Structural basis of the migfilin-filamin interaction and competition with integrin beta tails.
J Biol Chem. 2008 Dec 12;283(50):35154-63. doi: 10.1074/jbc.M802592200. Epub 2008 Sep 30.
4
5
Isoform divergence of the filamin family of proteins.
Mol Biol Evol. 2010 Feb;27(2):283-95. doi: 10.1093/molbev/msp236. Epub 2009 Oct 5.
6
The molecular basis of filamin binding to integrins and competition with talin.
Mol Cell. 2006 Feb 3;21(3):337-47. doi: 10.1016/j.molcel.2006.01.011.
7
Structural and functional aspects of filamins.
Biochim Biophys Acta. 2001 Apr 23;1538(2-3):99-117. doi: 10.1016/s0167-4889(01)00072-6.
10
Unusual splicing events result in distinct Xin isoforms that associate differentially with filamin c and Mena/VASP.
Exp Cell Res. 2006 Jul 1;312(11):2154-67. doi: 10.1016/j.yexcr.2006.03.015. Epub 2006 Apr 24.

引用本文的文献

1
Integrin and Its Associated Proteins as a Mediator for Mechano-Signal Transduction.
Biomolecules. 2025 Jan 23;15(2):166. doi: 10.3390/biom15020166.
2
Fine-tuning levels of filamins a and b as a specific mechanism sustaining Th2 lymphocyte functions.
Nat Commun. 2024 Dec 5;15(1):10574. doi: 10.1038/s41467-024-53768-3.
4
A Proteomic Survey of the Cystic Fibrosis Transmembrane Conductance Regulator Surfaceome.
Int J Mol Sci. 2023 Jul 14;24(14):11457. doi: 10.3390/ijms241411457.
7
Migfilin: Cell Adhesion Effect and Comorbidities.
Onco Targets Ther. 2022 Apr 19;15:411-422. doi: 10.2147/OTT.S357355. eCollection 2022.
9
Lipid-driven CFTR clustering is impaired in cystic fibrosis and restored by corrector drugs.
J Cell Sci. 2022 Mar 1;135(5). doi: 10.1242/jcs.259002. Epub 2022 Mar 7.
10
Periostin/Filamin-A: A Candidate Central Regulatory Axis for Valve Fibrogenesis and Matrix Compaction.
Front Cell Dev Biol. 2021 Jun 3;9:649862. doi: 10.3389/fcell.2021.649862. eCollection 2021.

本文引用的文献

2
Migfilin, a molecular switch in regulation of integrin activation.
J Biol Chem. 2009 Feb 13;284(7):4713-22. doi: 10.1074/jbc.M807719200. Epub 2008 Dec 13.
3
Structural basis of the migfilin-filamin interaction and competition with integrin beta tails.
J Biol Chem. 2008 Dec 12;283(50):35154-63. doi: 10.1074/jbc.M802592200. Epub 2008 Sep 30.
4
Beta2 integrin phosphorylation on Thr758 acts as a molecular switch to regulate 14-3-3 and filamin binding.
Blood. 2008 Sep 1;112(5):1853-62. doi: 10.1182/blood-2007-12-127795. Epub 2008 Jun 12.
5
Structural basis of filamin A functions.
J Cell Biol. 2007 Dec 3;179(5):1011-25. doi: 10.1083/jcb.200707073.
6
Clustal W and Clustal X version 2.0.
Bioinformatics. 2007 Nov 1;23(21):2947-8. doi: 10.1093/bioinformatics/btm404. Epub 2007 Sep 10.
7
Structure of three tandem filamin domains reveals auto-inhibition of ligand binding.
EMBO J. 2007 Sep 5;26(17):3993-4004. doi: 10.1038/sj.emboj.7601827. Epub 2007 Aug 9.
8
Filamin-A regulates actin-dependent clustering of HIV receptors.
Nat Cell Biol. 2007 Jul;9(7):838-46. doi: 10.1038/ncb1610. Epub 2007 Jun 17.
9
Filamins: promiscuous organizers of the cytoskeleton.
Trends Biochem Sci. 2006 Jul;31(7):411-9. doi: 10.1016/j.tibs.2006.05.006. Epub 2006 Jun 16.
10
The molecular basis of filamin binding to integrins and competition with talin.
Mol Cell. 2006 Feb 3;21(3):337-47. doi: 10.1016/j.molcel.2006.01.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验