Suppr超能文献

细胞内 pH 值在新生大鼠心肌细胞的多细胞链中的空间调节。

Spatial regulation of intracellular pH in multicellular strands of neonatal rat cardiomyocytes.

机构信息

Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.

出版信息

Cardiovasc Res. 2010 Mar 1;85(4):729-38. doi: 10.1093/cvr/cvp343. Epub 2009 Oct 14.

Abstract

AIMS

Intracellular pH (pHi), an important modulator of cardiac function, is normally regulated to within narrow limits (7.1-7.2). In adult ventricular cell pairs, localized cellular pHi disturbances are removed by sarcolemmal acid/base transporters, but can also be dissipated (diluted) across gap junctions, aboard mobile buffers such as CO2/HCO3- and histidine-containing dipeptides (HCDPs). In the present work, we test this model of spatial pHi regulation in multicellular strands of neonatal rat ventricular myocytes.

METHODS AND RESULTS

We confocally image pHi (intracellular fluorescence emitted from the pH dye carboxy-SNARF-1) in multicellular (>500 microm long, approximately 30 microm wide) cultured strands of electrically coupled, neonatal rat ventricular myocytes. Activity of sarcolemmal Na+/H+ exchange and Na+-HCO3- co-transport resembles that in adult cells. Localized photolytic H+ uncaging from intracellular 2-nitrobenzaldehyde, in the presence of CO2/HCO3- buffer, triggers considerable passive H+ spread along a strand, thus helping to dissipate the acid load. Inhibition of gap junctions (with alpha-glycyrrhetinic acid) truncates the spread, indicating they are conduits for local intracellular H+ flux. Without CO2/HCO3- buffer, longitudinal H+ mobility is reduced by approximately 90%, indicating that intracellular and cell-to-cell H+ flux relies far less on intrinsic mobile buffers (e.g. HCDPs) in neonates than in adults. This is consistent with five-fold lower HCDP levels in neonatal, compared to adult, ventricular tissue, and also with measurements of a lower intrinsic (non-CO2/HCO3-) H+ buffering capacity in neonatal strands compared with freshly isolated adult cells.

CONCLUSION

We conclude that mobile buffers and gap junctions are key spatial controllers of pHi in cardiac tissue, helping to maintain a myocardial pHi syncitium. In neonatal tissue, intracellular H+ movement is CO2/HCO3- dependent, while adult tissue relies increasingly on intrinsic dipeptides that provide additional spatial pHi control, appropriate for the developmental increase in myocyte size.

摘要

目的

细胞内 pH 值(pHi)是心脏功能的重要调节剂,通常受到严格调控,维持在 7.1-7.2 的狭窄范围内。在成年心室细胞对中,局部细胞内 pH 值的变化可通过肌浆网酸碱转运体进行调节,但也可以通过缝隙连接进行消散(稀释),或借助 CO2/HCO3-和组氨酸二肽(HCDPs)等移动缓冲液进行消散。在本研究中,我们检测了这一空间 pH 值调节模型在新生大鼠心室肌细胞的多核细胞串中的作用。

方法和结果

我们共聚焦成像了多细胞(>500 µm 长,约 30 µm 宽)培养的电耦联新生大鼠心室肌细胞串中的 pHi(从 pH 染料羧基-SNARF-1 发出的细胞内荧光)。肌浆网 Na+/H+交换和 Na+-HCO3-协同转运的活性与成年细胞相似。在 CO2/HCO3-缓冲液存在的情况下,用局部光解 2-硝基苯甲醛从细胞内产生的 H+猝灭会触发酸负荷沿着细胞串的扩散,从而有助于消散酸负荷。缝隙连接的抑制(用α-甘草次酸)会截断扩散,表明它们是细胞内 H+流的通道。没有 CO2/HCO3-缓冲液时,纵向 H+流动性降低约 90%,表明新生大鼠的细胞内和细胞间 H+流动远不如成年大鼠更依赖于内在的移动缓冲液(如 HCDPs)。这与新生大鼠心室组织中 HCDP 水平比成年大鼠低五倍以及与新分离的成年细胞相比,新生大鼠肌节的内在(非 CO2/HCO3-)H+缓冲能力较低的测量结果一致。

结论

我们得出结论,移动缓冲液和缝隙连接是心脏组织中 pH 值的关键空间控制器,有助于维持心肌 pHi 同步。在新生组织中,H+的运动依赖于 CO2/HCO3-,而成年组织则越来越依赖于提供额外空间 pH 值控制的内在二肽,这适合于心肌细胞大小的发育增加。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验