Suppr超能文献

高海拔居住对犬肺部的永久性肺泡重塑作用。

Permanent alveolar remodeling in canine lung induced by high-altitude residence during maturation.

机构信息

Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9034, USA.

出版信息

J Appl Physiol (1985). 2009 Dec;107(6):1911-7. doi: 10.1152/japplphysiol.00552.2009. Epub 2009 Oct 15.

Abstract

Young canines born at sea level (SL) and raised for 5 mo at high altitude (HA, 3,800 m), followed by return to SL before somatic maturation, showed enhanced alveolar gas exchange and diffusing capacity at rest and exercise that persisted into adulthood (McDonough P, Dane DM, Hsia CC, Yilmaz C, Johnson RL Jr. J Appl Physiol 100: 474-81, 2006; Hsia CCW, Johnson RL Jr, McDonough P, Dane DM, Hurst MD, Fehmel JL, Wagner HE, Wagner PD. J Appl Physiol 102: 1448-55, 2007). To examine the associated structural response, we quantified lung ultrastructure in male foxhounds raised at 3,800 m HA or their littermates raised at SL (n = 6 each) from 2.5 to 7.5 mo of age. Three years following return to SL, lungs were fixed for morphometric analysis. In HA-exposed animals compared with SL controls, lung volume at a given inflation pressure was higher with enlargement of alveolar ducts and sacs without significant differences in the volumes of alveolar cell components, septal tissue, or in alveolar-capillary surface areas. There was a shift toward a significantly lower harmonic mean thickness of the blood-gas diffusion barrier in HA-raised animals. As a control organ, muscle capillary length density of costal diaphragm was significantly higher in HA-raised animals, indicating parallel adaptation in oxygen transport organs. We conclude that, in actively growing animals, 5 mo of HA exposure that was discontinued before somatic maturation induced acinar remodeling that increased lung compliance and reduced the resistance of blood-gas diffusion barrier to diffusion that persisted into adulthood, but without permanent enhancement of alveolar tissue growth.

摘要

在海平面(SL)出生并在高海拔(HA,3800 米)饲养 5 个月的年轻犬,在体成熟前返回 SL,表现出休息和运动时肺泡气体交换和弥散能力增强,这种增强持续到成年(McDonough P、Dane DM、Hsia CC、Yilmaz C、Johnson RL Jr. J Appl Physiol 100: 474-81, 2006;Hsia CCW、Johnson RL Jr、McDonough P、Dane DM、Hurst MD、Fehmel JL、Wagner HE、Wagner PD. J Appl Physiol 102: 1448-55, 2007)。为了研究相关的结构反应,我们在 2.5 至 7.5 个月大时,对在 3800 米高海拔(HA)饲养或在海平面(SL)饲养的雄性猎狐犬的肺超微结构进行了量化(每组 6 只)。返回 SL 三年后,对肺部进行了形态计量分析。与 SL 对照组相比,在给定充气压力下,HA 暴露动物的肺容积更高,肺泡导管和囊扩张,但肺泡细胞成分、间隔组织或肺泡-毛细血管表面积的体积没有显著差异。在 HA 饲养的动物中,血-气扩散屏障的调和平均厚度明显降低。作为对照器官,HA 饲养的动物的肋间膈肌肌毛细血管长度密度明显较高,表明氧气运输器官的平行适应。我们的结论是,在生长活跃的动物中,5 个月的 HA 暴露在体成熟前停止,导致腺泡重塑,增加了肺顺应性,降低了血-气扩散屏障对扩散的阻力,这种情况持续到成年,但肺泡组织生长没有永久性增强。

相似文献

1
Permanent alveolar remodeling in canine lung induced by high-altitude residence during maturation.
J Appl Physiol (1985). 2009 Dec;107(6):1911-7. doi: 10.1152/japplphysiol.00552.2009. Epub 2009 Oct 15.
2
Long-term enhancement of pulmonary gas exchange after high-altitude residence during maturation.
J Appl Physiol (1985). 2006 Feb;100(2):474-81. doi: 10.1152/japplphysiol.01069.2005. Epub 2005 Oct 6.
3
Persistent structural adaptation in the lungs of guinea pigs raised at high altitude.
Respir Physiol Neurobiol. 2015 Mar;208:37-44. doi: 10.1016/j.resp.2014.12.011. Epub 2014 Dec 19.
4
Residence at 3,800-m altitude for 5 mo in growing dogs enhances lung diffusing capacity for oxygen that persists at least 2.5 years.
J Appl Physiol (1985). 2007 Apr;102(4):1448-55. doi: 10.1152/japplphysiol.00971.2006. Epub 2007 Jan 11.
5
Alveolar diffusion-perfusion interactions during high-altitude residence in guinea pigs.
J Appl Physiol (1985). 2007 Jun;102(6):2179-85. doi: 10.1152/japplphysiol.00059.2007. Epub 2007 Mar 15.
6
Enhanced alveolar growth and remodeling in Guinea pigs raised at high altitude.
Respir Physiol Neurobiol. 2005 May 12;147(1):105-15. doi: 10.1016/j.resp.2005.02.001.
7
Splenectomy impairs diffusive oxygen transport in the lung of dogs.
J Appl Physiol (1985). 2006 Jul;101(1):289-97. doi: 10.1152/japplphysiol.01600.2005. Epub 2006 Apr 6.
8
Inter-individual differences in control of alveolar capillary blood volume in exercise and hypoxia.
Respir Physiol Neurobiol. 2014 Jan 1;190:96-104. doi: 10.1016/j.resp.2013.08.021. Epub 2013 Sep 17.
9
Acclimatization of low altitude-bred deer mice ( Peromyscus maniculatus) to high altitude.
J Appl Physiol (1985). 2018 Nov 1;125(5):1411-1423. doi: 10.1152/japplphysiol.01036.2017. Epub 2018 Aug 9.
10
Cardiopulmonary adaptations to pneumonectomy in dogs. IV. Membrane diffusing capacity and capillary blood volume.
J Appl Physiol (1985). 1994 Aug;77(2):998-1005. doi: 10.1152/jappl.1994.77.2.998.

引用本文的文献

1
Perfusion-related stimuli for compensatory lung growth following pneumonectomy.
J Appl Physiol (1985). 2016 Jul 1;121(1):312-23. doi: 10.1152/japplphysiol.00297.2016. Epub 2016 May 5.
2
Lung Structure and the Intrinsic Challenges of Gas Exchange.
Compr Physiol. 2016 Mar 15;6(2):827-95. doi: 10.1002/cphy.c150028.
3
Differences in Hematological Traits between High- and Low-Altitude Lizards (Genus Phrynocephalus).
PLoS One. 2015 May 8;10(5):e0125751. doi: 10.1371/journal.pone.0125751. eCollection 2015.
4
Persistent structural adaptation in the lungs of guinea pigs raised at high altitude.
Respir Physiol Neurobiol. 2015 Mar;208:37-44. doi: 10.1016/j.resp.2014.12.011. Epub 2014 Dec 19.
5
Defining a stimuli-response relationship in compensatory lung growth following major resection.
J Appl Physiol (1985). 2014 Apr 1;116(7):816-24. doi: 10.1152/japplphysiol.01291.2013. Epub 2014 Jan 30.
6
Development and remodeling of the vertebrate blood-gas barrier.
Biomed Res Int. 2013;2013:101597. doi: 10.1155/2013/101597. Epub 2012 Dec 27.
7
Increased lung volume in infants and toddlers at high compared to low altitude.
Pediatr Pulmonol. 2013 Dec;48(12):1224-30. doi: 10.1002/ppul.22764. Epub 2013 Feb 8.
8
Separating in vivo mechanical stimuli for postpneumonectomy compensation: imaging and ultrastructural assessment.
J Appl Physiol (1985). 2013 Apr;114(8):961-70. doi: 10.1152/japplphysiol.01394.2012. Epub 2013 Jan 17.
9
Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates.
J Exp Biol. 2010 Dec 15;213(Pt 24):4125-36. doi: 10.1242/jeb.048181.

本文引用的文献

1
Alveolar diffusion-perfusion interactions during high-altitude residence in guinea pigs.
J Appl Physiol (1985). 2007 Jun;102(6):2179-85. doi: 10.1152/japplphysiol.00059.2007. Epub 2007 Mar 15.
2
Residence at 3,800-m altitude for 5 mo in growing dogs enhances lung diffusing capacity for oxygen that persists at least 2.5 years.
J Appl Physiol (1985). 2007 Apr;102(4):1448-55. doi: 10.1152/japplphysiol.00971.2006. Epub 2007 Jan 11.
3
Long-term enhancement of pulmonary gas exchange after high-altitude residence during maturation.
J Appl Physiol (1985). 2006 Feb;100(2):474-81. doi: 10.1152/japplphysiol.01069.2005. Epub 2005 Oct 6.
4
Hypoxia suppresses elastin repair by rat lung fibroblasts.
Am J Physiol Lung Cell Mol Physiol. 2005 Dec;289(6):L931-6. doi: 10.1152/ajplung.00037.2005. Epub 2005 Jul 29.
5
Enhanced alveolar growth and remodeling in Guinea pigs raised at high altitude.
Respir Physiol Neurobiol. 2005 May 12;147(1):105-15. doi: 10.1016/j.resp.2005.02.001.
6
A MORPHOMETRIC STUDY ON THE THICKNESS OF THE PULMONARY AIR-BLOOD BARRIER.
J Cell Biol. 1964 Jun;21(3):367-96. doi: 10.1083/jcb.21.3.367.
8
Density-dependent reduction of nitric oxide diffusing capacity after pneumonectomy.
J Appl Physiol (1985). 2003 May;94(5):1926-32. doi: 10.1152/japplphysiol.00525.2002. Epub 2003 Jan 31.
9
Variation of lung volume after fixation when measured by immersion or Cavalieri method.
Am J Physiol Lung Cell Mol Physiol. 2003 Jan;284(1):L242-5. doi: 10.1152/ajplung.00184.2002. Epub 2002 Sep 13.
10
Regulation of human placental development by oxygen tension.
Science. 1997 Sep 12;277(5332):1669-72. doi: 10.1126/science.277.5332.1669.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验