Department of Experimental Evolutionary Biology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
Res Microbiol. 2009 Dec;160(10):742-50. doi: 10.1016/j.resmic.2009.10.001. Epub 2009 Oct 14.
Polychlorinated biphenyls (PCBs) are ubiquitous persistent organic pollutants that can be co-metabolically biotransformed by biphenyl-utilizing bacteria. In this study, terminal-restriction fragment length polymorphism (T-RFLP) was applied to the substrate specificity-determining region of the 2,3-biphenyl dioxygenase encoding genes of a microbial community found in a PCB-polluted soil. Notably, both the total biphenyl/PCB-utilizing community and its members actively expressing the 2,3-biphenyl dioxygenase gene were analyzed. T-RFLP fingerprinting along with gene library construction allowed us not only to detect biphenyl dioxygenases related to the well characterized catabolic patterns of Pseudomonas pseudoalcaligenes KF707 and Burkholderia xenovorans LB400, but also to reveal novel environmental enzyme classes displaying amino acid substitutions that may be related to broader specificity and improved catalytic properties. Furthermore, space and time of sampling along with bioavailability conditions of different PCBs were considered possible sources of profile variability.
多氯联苯(PCBs)是普遍存在的持久性有机污染物,可以被利用联苯的细菌共代谢生物转化。在这项研究中,末端限制性片段长度多态性(T-RFLP)被应用于在污染土壤中发现的微生物群落中 2,3-联苯双加氧酶编码基因的底物特异性决定区域。值得注意的是,对总联苯/多氯联苯利用群落及其积极表达 2,3-联苯双加氧酶基因的成员进行了分析。T-RFLP 指纹图谱分析和基因文库构建不仅使我们能够检测到与 Pseudomonas pseudoalcaligenes KF707 和 Burkholderia xenovorans LB400 的典型代谢模式相关的联苯双加氧酶,还揭示了具有氨基酸取代的新型环境酶类,可能与更广泛的特异性和改进的催化性能有关。此外,还考虑了不同 PCB 的采样空间和时间以及生物利用条件,它们可能是造成图谱可变性的原因。