Chemistry Department, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
J Phys Chem A. 2010 Jan 14;114(1):45-53. doi: 10.1021/jp907507z.
The classical reaction dynamics of a four-body, bimolecular reaction on a neural network (NN) potential-energy surface (PES) fitted to a database obtained solely from ab initio MP2/6-311G(d,p) calculations are reported. The present work represents the first reported application of ab initio NN methods to a four-body, bimolecular, gas-phase reaction where bond extensions reach 8.1 A for the BeH + H(2) --> BeH(2) + H reaction. A modified, iterative novelty sampling method is used to select data points based on classical trajectories computed on temporary NN surfaces. After seven iterations, the sampling process is found to converge after selecting 9604 configurations. Incorporation of symmetry increases this to 19 208 BeH(3) configurations. The analytic PES for the system is obtained from the ensemble average of a five-member (6-60-1) NN committee. The mean absolute error (MAE) for the committee is 0.0046 eV (0.44 kJ mol(-1)). The total energy range of the BeH(3) database is 147.0 kJ mol(-1). Therefore, this MAE represents a percent energy error of 0.30%. Since it is the gradient of the PES that constitutes the most important quantity in molecular dynamics simulations, the paper also reports mean absolute error for the gradient. This result is 0.026 eV A(-1) (2.51 kJ mol(-1) A(-1)). Since the gradient magnitudes span a range of 15.32 eV A(-1) over the configuration space tested, this mean absolute gradient error represents a percent error of 0.17%. The mean percent absolute relative gradient error is 4.67%. The classically computed reaction cross sections generally increase with total energy. They vary from 0.007 to 0.030 A(2) when H(2) is at ground state, and from 0.05 to 0.10 A(2) when H(2) is in the first excited state. Trajectory integration is very fast using the five-member NN PES. The average trajectory integration time is 1.07 s on a CPU with a clock speed of 2.4 GHz. Zero angular momentum collisions are also investigated and compared with previously reported quantum dynamics on the same system. The quantum reaction probabilities exhibit pronounced resonance effects that are absent in the classical calculations. The magnitudes of quantum and classical results are in fair accord with the classical results being about 30-40% higher due to the lack of quantum restrictions on the zero-point vibrational energy.
报道了基于神经网络(NN)势能面(PES)的四体双分子反应的经典反应动力学,该神经网络 PES 是根据仅从从头算 MP2/6-311G(d,p) 计算获得的数据库拟合得到的。本工作代表了首次将从头算 NN 方法应用于四体双分子气相反应,其中键延伸达到 8.1Å,用于 BeH + H(2) --> BeH(2) + H 反应。使用一种改进的、迭代新颖采样方法,根据在临时 NN 表面上计算的经典轨迹来选择数据点。经过七次迭代,在选择 9604 个构型后,采样过程被发现收敛。对称性的加入将其增加到 19208 个 BeH(3)构型。该体系的解析 PES 是从由五个成员(6-60-1)NN 委员会组成的集合平均值获得的。委员会的平均绝对误差(MAE)为 0.0046 eV(0.44 kJ mol(-1))。BeH(3)数据库的总能量范围为 147.0 kJ mol(-1)。因此,这个 MAE 代表分子动力学模拟中最重要的数量——势能的 0.30%的能量误差。由于在分子动力学模拟中最重要的是势能的梯度,因此本文还报告了梯度的平均绝对误差。这个结果是 0.026 eV A(-1)(2.51 kJ mol(-1) A(-1))。由于梯度幅度在测试的构型空间中跨越了 15.32 eV A(-1)的范围,因此这个平均绝对梯度误差代表了 0.17%的百分比误差。平均百分比绝对相对梯度误差为 4.67%。经典计算的反应截面通常随总能量增加而增加。当 H(2)处于基态时,它们的范围从 0.007 到 0.030 A(2),当 H(2)处于第一激发态时,它们的范围从 0.05 到 0.10 A(2)。使用五成员 NN PES 进行轨迹积分非常快。在具有 2.4 GHz 时钟速度的 CPU 上,平均轨迹积分时间为 1.07 秒。还研究了零角动量碰撞,并与相同体系的先前报道的量子动力学进行了比较。量子反应概率表现出明显的共振效应,而经典计算中则不存在。量子和经典结果的大小相当一致,由于零能振动能没有量子限制,经典结果约高 30-40%。