Department of Chemistry, Third Floor, Kathleen Lonsdale Building, University College London, Gower Street, WC1E 6BT, London, United Kingdom.
J Am Chem Soc. 2009 Nov 18;131(45):16509-24. doi: 10.1021/ja906105x.
Fluorescence spectroscopy and a range of computer simulation techniques are used to study the structure directing effect of benzylpyrrolidine (BP) and (S)-(-)-N-benzylpyrrolidine-2-methanol (BPM) in the synthesis of nanoporous aluminophosphate frameworks with AFI (one-dimensional channels) and SAO (three-dimensional interconnected channels) topologies. We study the supramolecular chemistry of BP and BPM molecules in aqueous solution and compare it with the aggregation state of the molecules found when they are inside the AlPO nanopores after crystallization. The aggregation of the molecules within the structures can be explained by a combination of thermodynamic and kinetic effects. The former are given by the stability of the molecular species interacting with the oxide networks relative to their stability in solution; the latter depend on the aggregation behavior of the molecules in the synthesis gels prior to crystallization. Whereas BPM only forms one type of aggregate in solution, which has the appropriate conformation to match the empty channels of the forming nanoporous frameworks, BP forms aggregates with different molecular orientations, of which only one matches the framework interstices. This different supramolecular chemistry, together with the higher interaction of BPM with the oxide networks, makes BPM a better structure directing agent (SDA); it is also responsible for the higher incorporation of BPM as dimers in the frameworks, especially in the AFI structure, observed experimentally. The concentration of the SDA molecules in the gels, and so the density per volume of the SDAs, determines the exclusion zone from which the pores and/or cavities of the framework will arise, and so the porous network of the formed material. A clear relationship between the SDA density in solution and in the framework is observed, thus enabling an eventual control of the material density by adjusting the SDA concentration in the gels. The topological instability intrinsic to these open framework structures is compensated by a high host-guest interaction energy; the SAO topology is further stabilized by doping with Zn. Our computational results account for and rationalize all the effects observed experimentally, providing a complete picture of the mode of structure direction of these aromatic molecules in the synthesis of nanoporous aluminophosphates.
荧光光谱和一系列计算机模拟技术被用于研究苄基吡咯烷(BP)和(S)-(-)-N-苄基吡咯烷-2-甲醇(BPM)在具有 AFI(一维通道)和 SAO(三维相互连接的通道)拓扑结构的纳米多孔磷酸铝骨架合成中的结构导向作用。我们研究了 BP 和 BPM 分子在水溶液中的超分子化学,并将其与结晶后存在于 AlPO 纳米孔内的分子聚集状态进行了比较。分子在结构内的聚集可以通过热力学和动力学效应的组合来解释。前者由与氧化物网络相互作用的分子物种的稳定性相对于它们在溶液中的稳定性来给出;后者取决于在结晶之前合成凝胶中分子的聚集行为。虽然 BPM 在溶液中仅形成一种类型的聚集体,但其具有与形成的纳米多孔骨架的空通道相匹配的适当构象,但 BP 形成具有不同分子取向的聚集体,其中只有一种与骨架空隙相匹配。这种不同的超分子化学,加上 BPM 与氧化物网络的更高相互作用,使得 BPM 成为更好的结构导向剂(SDA);它也是 BPM 以二聚体形式更高地掺入骨架中的原因,特别是在实验中观察到的 AFI 结构中。凝胶中 SDA 分子的浓度,即每个体积的 SDA 的密度,决定了将产生骨架的孔和/或空腔的排斥区,从而决定了形成材料的多孔网络。在溶液中和骨架中观察到 SDA 密度之间存在明显的关系,因此通过调整凝胶中的 SDA 浓度可以最终控制材料的密度。这些开放骨架结构固有的拓扑不稳定性通过高主客体相互作用能得到补偿;通过掺杂 Zn,SAO 拓扑结构得到进一步稳定。我们的计算结果解释了实验中观察到的所有效应,提供了这些芳族分子在合成纳米多孔磷酸铝中结构导向模式的完整图像。