Suppr超能文献

具有长混合时间的双波向量扩散加权实验的张量模型和微观各向异性度量。

A tensor model and measures of microscopic anisotropy for double-wave-vector diffusion-weighting experiments with long mixing times.

机构信息

Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

出版信息

J Magn Reson. 2010 Jan;202(1):43-56. doi: 10.1016/j.jmr.2009.09.015. Epub 2009 Oct 1.

Abstract

Experiments with two diffusion-weighting periods applied successively in a single experiment, so-called double-wave-vector (DWV) diffusion-weighting experiments, are a promising tool for the investigation of material or tissue structure on a microscopic level, e.g. to determine cell or compartment sizes or to detect pore or cell anisotropy. However, the theoretical descriptions presented so far for experiments that aim to investigate the microscopic anisotropy with a long mixing time between the two diffusion weightings, are limited to certain wave vector orientations, specific pore shapes, and macroscopically isotropic samples. Here, the signal equations for fully restricted diffusion are re-investigated in more detail. A general description of the signal behavior for arbitrary wave vector directions, pore or cell shapes, and orientation distributions of the pores or cells is obtained that involves a fourth-order tensor approach. From these equations, a rotationally invariant measure of the microscopic anisotropy, termed MA, is derived that yields information complementary to that of the (macroscopic) anisotropy measures of standard diffusion-tensor acquisitions. Furthermore, the detailed angular modulation for arbitrary cell shapes with an isotropic orientation distribution is derived. Numerical simulations of the MR signal with a Monte-Carlo algorithms confirm the theoretical considerations. The extended theoretical description and the introduction of a reliable measure of the microscopic anisotropy may help to improve the applicability and reliability of corresponding experiments.

摘要

在单次实验中连续应用两个扩散加权期的实验,即所谓的双波向量(DWV)扩散加权实验,是一种很有前途的工具,可用于研究微观水平的材料或组织结构,例如确定细胞或隔室的大小或检测孔隙或细胞各向异性。然而,迄今为止,针对具有两个扩散加权之间较长混合时间的实验,旨在研究微观各向异性的理论描述仅限于某些波向量方向、特定的孔形状和宏观各向同性的样本。在这里,更详细地重新研究了完全受限扩散的信号方程。获得了针对任意波向量方向、孔或细胞形状以及孔或细胞的取向分布的信号行为的通用描述,涉及四阶张量方法。从这些方程中,推导出微观各向异性的旋转不变度量(MA),它提供了与标准扩散张量采集的(宏观)各向异性度量互补的信息。此外,还推导了具有各向同性取向分布的任意细胞形状的详细角调制。用蒙特卡罗算法对 MR 信号的数值模拟证实了理论考虑。扩展的理论描述和引入可靠的微观各向异性度量可能有助于提高相应实验的适用性和可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验