Suppr超能文献

使用图割算法在存在大的场不均匀性的情况下实现稳健的水/脂肪分离。

Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm.

作者信息

Hernando Diego, Kellman P, Haldar J P, Liang Z-P

机构信息

Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

出版信息

Magn Reson Med. 2010 Jan;63(1):79-90. doi: 10.1002/mrm.22177.

Abstract

Water/fat separation is a classical problem for in vivo proton MRI. Although many methods have been proposed to address this problem, robust water/fat separation remains a challenge, especially in the presence of large amplitude of static field inhomogeneities. This problem is challenging because of the nonuniqueness of the solution for an isolated voxel. This paper tackles the problem using a statistically motivated formulation that jointly estimates the complete field map and the entire water/fat images. This formulation results in a difficult optimization problem that is solved effectively using a novel graph cut algorithm, based on an iterative process where all voxels are updated simultaneously. The proposed method has good theoretical properties, as well as an efficient implementation. Simulations and in vivo results are shown to highlight the properties of the proposed method and compare it to previous approaches. Twenty-five cardiac datasets acquired on a short, wide-bore scanner with different slice orientations were used to test the proposed method, which produced robust water/fat separation for these challenging datasets. This paper also shows example applications of the proposed method, such as the characterization of intramyocardial fat.

摘要

水脂分离是活体质子磁共振成像中的一个经典问题。尽管已经提出了许多方法来解决这个问题,但可靠的水脂分离仍然是一个挑战,尤其是在存在大振幅静磁场不均匀性的情况下。由于孤立体素解的非唯一性,这个问题具有挑战性。本文使用一种基于统计的公式来解决这个问题,该公式联合估计完整的场图和整个水脂图像。这种公式导致了一个困难的优化问题,通过一种新颖的图割算法有效地解决了这个问题,该算法基于一个所有体素同时更新的迭代过程。所提出的方法具有良好的理论性质以及高效的实现方式。模拟和活体结果表明了所提出方法的特性,并将其与以前的方法进行了比较。使用在短的、宽孔径扫描仪上以不同切片方向采集的25个心脏数据集来测试所提出的方法,该方法为这些具有挑战性的数据集产生了可靠的水脂分离。本文还展示了所提出方法的示例应用,如心肌内脂肪的表征。

相似文献

2
A network flow method for improved MR field map estimation in the presence of water and fat.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:82-5. doi: 10.1109/IEMBS.2008.4649096.
3
Fat water decomposition using globally optimal surface estimation (GOOSE) algorithm.
Magn Reson Med. 2015 Mar;73(3):1289-99. doi: 10.1002/mrm.25193. Epub 2014 Mar 6.
5
Water-fat separation in diffusion-weighted EPI using an IDEAL approach with image navigator.
Magn Reson Med. 2015 Mar;73(3):964-72. doi: 10.1002/mrm.25191. Epub 2014 Apr 10.
6
A convex relaxation approach to fat/water separation with minimum label description.
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):519-26. doi: 10.1007/978-3-642-33418-4_64.
7
Two-point dixon method with flexible echo times.
Magn Reson Med. 2011 Apr;65(4):994-1004. doi: 10.1002/mrm.22679. Epub 2010 Nov 16.
8
Free-Breathing High-Resolution, Swap-Free, and Motion-Corrected Water/Fat Separation in Pediatric Abdominal MRI.
Invest Radiol. 2024 Dec 1;59(12):805-812. doi: 10.1097/RLI.0000000000001092. Epub 2024 Jun 10.
9
Water-fat separation with parallel imaging based on BLADE.
Magn Reson Imaging. 2013 Jun;31(5):656-63. doi: 10.1016/j.mri.2012.10.018. Epub 2013 Jan 3.
10
Improving chemical shift encoded water-fat separation using object-based information of the magnetic field inhomogeneity.
Magn Reson Med. 2015 Feb;73(2):597-604. doi: 10.1002/mrm.25163. Epub 2014 Feb 28.

引用本文的文献

4
Reference Values for Water-Specific T1, Intermuscular and Intramuscular Fat Content in Skeletal Muscle at 2.89 T.
J Magn Reson Imaging. 2025 Jul;62(1):146-159. doi: 10.1002/jmri.29718. Epub 2025 Jan 24.
6
Unbiased and reproducible liver MRI-PDFF estimation using a scan protocol-informed deep learning method.
Eur Radiol. 2025 May;35(5):2843-2854. doi: 10.1007/s00330-024-11164-x. Epub 2024 Nov 5.
7
Chemical shift-encoded multishot EPI for navigator-free prostate DWI.
Magn Reson Med. 2025 Mar;93(3):1059-1076. doi: 10.1002/mrm.30334. Epub 2024 Oct 14.
8
Improved liver fat and quantification at 0.55 T using locally low-rank denoising.
Magn Reson Med. 2025 Mar;93(3):1348-1364. doi: 10.1002/mrm.30324. Epub 2024 Oct 9.
9
MRI of GlycoNOE in the human liver using GraspNOE-Dixon.
Magn Reson Med. 2025 Feb;93(2):507-518. doi: 10.1002/mrm.30270. Epub 2024 Oct 4.

本文引用的文献

1
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images.
IEEE Trans Pattern Anal Mach Intell. 1984 Jun;6(6):721-41. doi: 10.1109/tpami.1984.4767596.
2
Quantification of hepatic steatosis with MRI: the effects of accurate fat spectral modeling.
J Magn Reson Imaging. 2009 Jun;29(6):1332-9. doi: 10.1002/jmri.21751.
5
Dixon techniques for water and fat imaging.
J Magn Reson Imaging. 2008 Sep;28(3):543-58. doi: 10.1002/jmri.21492.
6
Fat-water separated delayed hyperenhanced myocardial infarct imaging.
Magn Reson Med. 2008 Sep;60(3):503-9. doi: 10.1002/mrm.21685.
7
Multiresolution field map estimation using golden section search for water-fat separation.
Magn Reson Med. 2008 Jul;60(1):236-44. doi: 10.1002/mrm.21544.
9
Liver fat content and T2*: simultaneous measurement by using breath-hold multiecho MR imaging at 3.0 T--feasibility.
Radiology. 2008 May;247(2):550-7. doi: 10.1148/radiol.2472070880. Epub 2008 Mar 18.
10
Joint estimation of water/fat images and field inhomogeneity map.
Magn Reson Med. 2008 Mar;59(3):571-80. doi: 10.1002/mrm.21522.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验