Department of Chemistry, University of Wisconsin Madison, Madison, Wisconsin 53706, USA.
J Phys Chem A. 2009 Dec 3;113(48):13562-9. doi: 10.1021/jp905796y.
Extending current coherent multidimensional spectroscopy (CMDS) methods to higher order multiwave mixing requires excitation intensities where dynamic Stark effects become important. This paper examines the dynamic Stark effects that occur in mixed frequency/time domain CMDS methods at high excitation intensities in a model system with an isolated vibrational state. The phase-matching restrictions in CMDS define the excitation beams that interact by nonlinear mixing while the dynamic Stark effects create vibrational ladders of increasingly more energetic overtone and combination band states. The excited quantum states form coherences that reemit the output beams. This paper uses the phase-matching conditions k(out) = k(1) - k(2) + k(2') and k(out) =- k(1) + k(2) + k(2'), where the subscripts denote the excitation frequencies of each excitation pulse and the output pulse. The phase-matching condition constrains each pulse to have an odd number of interactions so the overall mixing process that creates the output coherence must also involve an odd number of interactions. Tuning the excitation frequencies and spectrally resolving the output intensity creates three-dimensional spectra that resolve the individual overtone states. Changing the excitation pulse time delays measures the dynamics of the coherences and populations created by the multiple excitations. The multidimensional spectra probe the highly excited states of a molecular potential energy surface. This paper uses tungsten hexacarbonyl (W(CO)(6)) as a model for observing how dynamic Stark effects change the multidimensional spectra of a simple system. The simplicity of the W(CO)(6) system provides the experimental data required to develop the nonperturbative theoretical methods that will be necessary to model this new approach to CMDS.
将现有的相干多维光谱(CMDS)方法扩展到更高阶的多波混合需要激发强度,在这个强度下动态斯塔克效应变得很重要。本文在一个具有孤立振动态的模型系统中,研究了在高激发强度下混合频域/时域 CMDS 方法中动态斯塔克效应对 CMDS 方法的影响。CMDS 的相位匹配限制了通过非线性混合相互作用的激发光束,而动态斯塔克效应则会产生越来越多的能量泛音和组合带态的振动梯级。受激量子态形成相干性,重新发射输出光束。本文使用相位匹配条件 k(out) = k(1) - k(2) + k(2') 和 k(out) = - k(1) + k(2) + k(2'),其中下标表示每个激发脉冲和输出脉冲的激发频率。相位匹配条件限制每个脉冲的相互作用次数为奇数,因此创建输出相干性的整体混合过程也必须涉及奇数次相互作用。调谐激发频率并对输出强度进行光谱分辨可创建三维光谱,以分辨各个泛音状态。改变激发脉冲的时间延迟可测量由多次激发产生的相干性和布居的动力学。多维光谱探测分子势能表面的高激发态。本文使用六羰基钨(W(CO)(6))作为模型,观察动态斯塔克效应对简单系统多维光谱的影响。W(CO)(6)系统的简单性提供了所需的实验数据,以开发必要的非微扰理论方法,从而对这种新的 CMDS 方法进行建模。