Suppr超能文献

蛋白质 - 配体结合的计算设计:修饰天冬酰胺-tRNA 合成酶的特异性。

Computational design of protein-ligand binding: modifying the specificity of asparaginyl-tRNA synthetase.

机构信息

Laboratoire de Biochimie, Department of Biology, UMR CNRS 7654, Ecole Polytechnique, 91128 Palaiseau, France.

出版信息

J Comput Chem. 2010 Apr 30;31(6):1273-86. doi: 10.1002/jcc.21414.

Abstract

A method for computational design of protein-ligand interactions is implemented and tested on the asparaginyl- and aspartyl-tRNA synthetase enzymes (AsnRS, AspRS). The substrate specificity of these enzymes is crucial for the accurate translation of the genetic code. The method relies on a molecular mechanics energy function and a simple, continuum electrostatic, implicit solvent model. As test calculations, we first compute AspRS-substrate binding free energy changes due to nine point mutations, for which experimental data are available; we also perform large-scale redesign of the entire active site of each enzyme (40 amino acids) and compare to experimental sequences. We then apply the method to engineer an increased binding of aspartyl-adenylate (AspAMP) into AsnRS. Mutants are obtained using several directed evolution protocols, where four or five amino acid positions in the active site are randomized. Promising mutants are subjected to molecular dynamics simulations; Poisson-Boltzmann calculations provide an estimate of the corresponding, AspAMP, binding free energy changes, relative to the native AsnRS. Several of the mutants are predicted to have an inverted binding specificity, preferring to bind AspAMP rather than the natural substrate, AsnAMP. The computed binding affinities are significantly weaker than the native, AsnRS:AsnAMP affinity, and in most cases, the active site structure is significantly changed, compared to the native complex. This almost certainly precludes catalytic activity. One of the designed sequences has a higher affinity and more native-like structure and may represent a valid candidate for Asp activity.

摘要

一种用于设计蛋白质-配体相互作用的计算方法已被实现,并在天冬酰胺酰-tRNA 合成酶(AsnRS)和天冬氨酸-tRNA 合成酶(AspRS)这两种酶上进行了测试。这些酶的底物特异性对于遗传密码的准确翻译至关重要。该方法依赖于分子力学能量函数和简单的连续静电隐式溶剂模型。作为测试计算,我们首先计算了由于九个点突变导致的 AspRS 底物结合自由能变化,这些点突变的实验数据是可用的;我们还对每个酶(40 个氨基酸)的整个活性部位进行了大规模的重新设计,并与实验序列进行了比较。然后,我们将该方法应用于设计增强天冬氨酸腺苷酸(AspAMP)与 AsnRS 的结合。通过几种定向进化方案获得突变体,其中在活性部位随机选择四个或五个氨基酸位置。有前途的突变体将进行分子动力学模拟;泊松-玻尔兹曼计算提供了相应的 AspAMP 结合自由能变化的估计值,相对于天然的 AsnRS。预测其中一些突变体具有反转的结合特异性,更倾向于结合 AspAMP 而不是天然底物 AsnAMP。计算得到的结合亲和力明显弱于天然的 AsnRS:AsnAMP 亲和力,并且在大多数情况下,与天然复合物相比,活性部位结构发生了显著变化。这几乎可以肯定地排除了催化活性。设计的序列之一具有更高的亲和力和更类似于天然的结构,可能代表具有 Asp 活性的有效候选者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验