Won Yu-Jin, Puhl Henry L, Ikeda Stephen R
Section on Transmitter Signaling, Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-9411, USA.
J Neurosci. 2009 Oct 28;29(43):13603-12. doi: 10.1523/JNEUROSCI.2244-09.2009.
Endocannabinoids (eCB) such as 2-arachidonylglycerol (2-AG) are lipid metabolites that are synthesized in a postsynaptic neurons and act upon CB(1) cannabinoid receptors (CB(1)R) in presynaptic nerve terminals. This retrograde transmission underlies several forms of short and long term synaptic plasticity within the CNS. Here, we constructed a model system based on isolated rat sympathetic neurons, in which an eCB signaling cascade could be studied in a reduced, spatially compact, and genetically malleable system. We constructed a complete eCB production/mobilization pathway by sequential addition of molecular components. Heterologous expression of four components was required for eCB production and detection: metabotropic glutamate receptor 5a (mGluR5a), Homer 2b, diacylglycerol lipase alpha, and CB(1)R. In these neurons, application of l-glutamate produced voltage-dependent modulation of N-type Ca(2+) channels mediated by activation of CB(1)R. Using both molecular dissection and pharmacological agents, we provide evidence that activation of mGluR5a results in rapid enzymatic production of 2-AG followed by activation of CB(1)R. These experiments define the critical elements required to recapitulate retrograde eCB production and signaling in a single peripheral neuron. Moreover, production/mobilization of eCB can be detected on a physiologically relevant time scale using electrophysiological techniques. The system provides a platform for testing candidate molecules underlying facilitation of eCB transport across the plasma membrane.
内源性大麻素(eCB),如2-花生四烯酸甘油酯(2-AG),是在突触后神经元中合成的脂质代谢产物,作用于突触前神经末梢的CB(1)大麻素受体(CB(1)R)。这种逆行传递是中枢神经系统内多种短期和长期突触可塑性的基础。在此,我们构建了一个基于分离的大鼠交感神经元的模型系统,在这个系统中,可以在一个简化的、空间紧凑的和基因可塑性的系统中研究eCB信号级联反应。我们通过依次添加分子成分构建了完整的eCB产生/动员途径。eCB的产生和检测需要四个成分的异源表达:代谢型谷氨酸受体5a(mGluR5a)、荷马2b、二酰基甘油脂肪酶α和CB(1)R。在这些神经元中,应用L-谷氨酸可通过激活CB(1)R产生对N型钙通道的电压依赖性调节。通过分子剖析和药理学试剂,我们提供证据表明,mGluR5a的激活导致2-AG的快速酶促产生,随后激活CB(1)R。这些实验确定了在单个外周神经元中重现逆行eCB产生和信号传导所需的关键要素。此外,使用电生理技术可以在生理相关的时间尺度上检测eCB的产生/动员。该系统为测试促进eCB跨质膜转运的候选分子提供了一个平台。