Suppr超能文献

Characterization of glucose transporter-enriched membranes from rat skeletal muscle: assessment of endothelial cell contamination and presence of sarcoplasmic reticulum and transverse tubules.

作者信息

Douen A G, Burdett E, Ramlal T, Rastogi S, Vranic M, Klip A

机构信息

Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.

出版信息

Endocrinology. 1991 Jan;128(1):611-6. doi: 10.1210/endo-128-1-611.

Abstract

The subcellular origin of membranes from rat skeletal muscle that contain insulin-responsive glucose transporters was investigated. Rat skeletal muscle membranes were prepared by isopycnic centrifugation in sucrose gradients. In vivo insulin treatment increased the content of GLUT-4 glucose transporters in the 25% sucrose fraction (enriched in the plasma membrane marker 5'-nucleotidase) and decreased it in the 35% sucrose fraction (devoid of plasma membrane markers). The possibility of endothelial cell membrane contamination in these fractions was investigated using a mouse monoclonal antibody, MRC OX-43, raised against a cell surface protein specific to rat vascular endothelium. MRC OX-43 did not react with any of the muscle membrane fractions, but did recognize a protein of around 100 kDa in extracts of human endothelial cells and rat aorta. An antibody to the dihydropyridine receptor of skeletal muscle, IIC12, was used to determine the presence of transverse tubules in these fractions. IIC12 reacted positively with a 180-kDa protein in purified rat transverse tubules. In contrast, this antibody did not cross-react with the 25% or 35% sucrose fractions. The 25% sucrose fraction was devoid of calsequestrin and ryanodine receptor, cisternal sarcoplasmic reticulum markers. However, small amounts of these proteins were detected in the 35% sucrose fraction. The results suggest that the 25% sucrose fraction represents plasma membranes, while the 35% sucrose fraction is an insulin-sensitive intracellular fraction that contains, but is not enriched in, sarcoplasmic reticulum cisternae. The results further show that insulin-induced recruitment of GLUT-4 transporters in skeletal muscles can be demonstrated independently of GLUT-4 recruitment in endothelial cells.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验