Suppr超能文献

结晶胰蛋白酶:IV. 热对胰蛋白酶失活和变性的可逆性。

CRYSTALLINE TRYPSIN : IV. REVERSIBILITY OF THE INACTIVATION AND DENATURATION OF TRYPSIN BY HEAT.

机构信息

Laboratories of The Rockefeller Institute for Medical Research, Princeton, N. J.

出版信息

J Gen Physiol. 1932 Nov 20;16(2):323-37. doi: 10.1085/jgp.16.2.323.

Abstract
  1. If dilute solutions of purified trypsin of low salt concentration at pH from 1 to 7 are heated to 100 degrees C. for 1 to 5 minutes and then cooled to 20 degrees C. there is no loss of activity or formation of denatured protein. If the hot trypsin solution is added directly to cold salt solution, on the other hand, all the protein precipitates and the supernatant solution is inactive. 2. The per cent of the total protein and activity present in the soluble form decreases from 100 per cent to zero as the temperature is raised from 20 degrees C. to 60 degrees C. and increases again from zero to 100 per cent as the solution is cooled from 60 degrees C. to 20 degrees C. The per cent of the total protein present in the soluble (native) form at any one temperature is nearly the same whether the temperature is reached from above or below. 3. If trypsin solutions at pH 7 are heated for increasing lengths of time at various temperatures and analyzed for total activity and total protein nitrogen after cooling, and for soluble activity and soluble (native) protein nitrogen, it is found that the soluble activity and soluble protein nitrogen decrease more and more rapidly as the temperature is raised, in agreement with the usual effects of temperature on the denaturation of protein. The total protein and total activity, on the other hand, decrease more and more rapidly up to about 70 degrees C. but as the temperature is raised above this there is less rapid change in the total protein or total activity and at 92 degrees C. the solutions are much more stable than at 42 degrees C. 4. Casein and peptone are not digested by trypsin at 100 degrees C. but when this digestion mixture is cooled to 35 degrees C. rapid digestion occurs. A solution of trypsin at 100 degrees C. added to peptone solution at zero degree digests the peptone much less rapidly than it does if the trypsin solution is allowed to cool slowly before adding it to the peptone solution. 5. The precipitate of insoluble protein obtained from adding hot trypsin solutions to cold salt solutions contains the S-S groups in free form as is usual for denatured protein. 6. The results show that there is an equilibrium between native and denatured trypsin protein the extent of which is determined by the temperature. Above 60 degrees C. the protein is in the denatured and inactive form and below 20 degrees C. it is in the native and active form. The equilibrium is attained rapidly. The results also show that the formation of denatured protein is proportional to the loss in activity and that the re-formation of native protein is proportional to the recovery of activity of the enzyme. This is strong evidence for the conclusion that the proteolytic activity of the preparation is a property of the native protein molecule.
摘要
  1. 如果将低浓度盐的、pH 值在 1 到 7 之间的、经过纯化的胰蛋白酶稀溶液加热到 100℃持续 1 到 5 分钟,然后再冷却到 20℃,则不会有活性损失或形成变性蛋白质。然而,如果将热的胰蛋白酶溶液直接加入到冷盐溶液中,那么所有的蛋白质都会沉淀,而上清液则没有活性。

  2. 随着温度从 20℃升高到 60℃,总蛋白和活性以可溶形式存在的百分比从 100%降至 0%,而当溶液从 60℃冷却到 20℃时,又从 0%增加到 100%。在任何一个温度下,以可溶(天然)形式存在的总蛋白百分比,无论是从上方还是下方达到该温度,都几乎相同。

  3. 如果将 pH 值为 7 的胰蛋白酶溶液在不同温度下加热不同的时间,然后冷却后分析总活性和总蛋白氮,以及可溶活性和可溶(天然)蛋白氮,就会发现随着温度的升高,可溶活性和可溶蛋白氮的下降速度越来越快,这与温度对蛋白质变性的通常影响一致。另一方面,总蛋白和总活性在大约 70℃之前下降得越来越快,但在这个温度之上,总蛋白或总活性的变化就不那么迅速了,而在 92℃时,溶液的稳定性比在 42℃时要高得多。

  4. 酪蛋白和蛋白胨在 100℃时不会被胰蛋白酶消化,但当这种消化混合物冷却到 35℃时,消化速度会迅速加快。将 100℃的胰蛋白酶溶液加入到零摄氏度的蛋白胨溶液中,与让胰蛋白酶溶液在加入蛋白胨溶液之前缓慢冷却相比,胰蛋白酶对蛋白胨的消化速度要慢得多。

  5. 将热胰蛋白酶溶液加入冷盐溶液中得到的不溶性蛋白质沉淀中,含有通常存在于变性蛋白质中的自由 S-S 基团。

  6. 结果表明,天然和变性胰蛋白酶蛋白之间存在平衡,其程度由温度决定。在 60℃以上,蛋白质处于变性和无活性状态,在 20℃以下,它处于天然和有活性状态。平衡迅速达到。结果还表明,变性蛋白质的形成与活性损失成正比,天然蛋白质的重新形成与酶活性的恢复成正比。这有力地证明了该制剂的蛋白水解活性是天然蛋白质分子的特性。

相似文献

1
CRYSTALLINE TRYPSIN : IV. REVERSIBILITY OF THE INACTIVATION AND DENATURATION OF TRYPSIN BY HEAT.
J Gen Physiol. 1932 Nov 20;16(2):323-37. doi: 10.1085/jgp.16.2.323.
2
Inactivation and reactivation of B. megatherium phage.
J Gen Physiol. 1955 Nov 20;39(2):225-58. doi: 10.1085/jgp.39.2.225.
3
INACTIVATION OF CRYSTALLINE TRYPSIN.
J Gen Physiol. 1934 Mar 20;17(4):591-615. doi: 10.1085/jgp.17.4.591.
6
CRYSTALLINE TRYPSIN : II. GENERAL PROPERTIES.
J Gen Physiol. 1932 Nov 20;16(2):295-311. doi: 10.1085/jgp.16.2.295.
7
Temperature control for kinetic refolding of heat-denatured ovalbumin.
Protein Sci. 1997 Jul;6(7):1491-502. doi: 10.1002/pro.5560060713.
8
DENATURATION CHANGES IN EGG ALBUMIN WITH UREA, RADIATION, AND HEAT.
J Gen Physiol. 1943 Nov 20;27(2):101-11. doi: 10.1085/jgp.27.2.101.
9
Cold denaturation and heat denaturation of Streptomyces subtilisin inhibitor. 1. CD and DSC studies.
Biochemistry. 1991 Nov 26;30(47):11307-13. doi: 10.1021/bi00111a017.
10
The reversible heat denaturation of chymotrypsinogen.
J Gen Physiol. 1951 May;34(5):583-606. doi: 10.1085/jgp.34.5.583.

引用本文的文献

1
Capillary Flow-Based One-Minute Quantification of Amyloid Proteolysis.
Biosensors (Basel). 2024 Aug 19;14(8):400. doi: 10.3390/bios14080400.
2
Mass Spectrometry Methods for Measuring Protein Stability.
Chem Rev. 2022 Apr 27;122(8):7690-7719. doi: 10.1021/acs.chemrev.1c00857. Epub 2022 Mar 22.
4
Equilibrium constants and free energies in unfolding of proteins in urea solutions.
Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14411-5. doi: 10.1073/pnas.93.25.14411.

本文引用的文献

1
The ferments of the pancreas: Part III. The properties of trypsin, trypsinogen and enterokinase.
J Physiol. 1913 Dec 19;47(4-5):339-60. doi: 10.1113/jphysiol.1913.sp001628.
2
The inactivation of trypsin by heat.
Biochem J. 1930;24(3):606-14. doi: 10.1042/bj0240606.
3
On the Resistance of Trypsin Solutions to Heat.
Biochem J. 1914 Feb;8(1):84-9. doi: 10.1042/bj0080084.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验