NORTHROP J H
J Gen Physiol. 1955 Nov 20;39(2):225-58. doi: 10.1085/jgp.39.2.225.
Preparation of Reversibly Inactivated (R.I.) Phage.- If B. megatherium phage (of any type, or in any stage of purification) is suspended in dilute salt solutions at pH 5-6, it is completely inactivated; i.e., it does not form plaques, or give rise to more phage when mixed with a sensitive organism (Northrop, 1954). The inactivation occurs when the phage is added to the dilute salt solution. If a suspension of the inactive phage in pH 7 peptone is titrated to pH 5 and allowed to stand, the activity gradually returns. The inactivation is therefore reversible. Properties of R.I. Phage.- The R.I. phage is adsorbed by sensitive cells at about the same rate as the active phage. It kills the cells, but no active phage is produced. The R.I. phage therefore has the properties of phage "ghosts" (Herriott, 1951) or of colicines (Gratia, 1925), or phage inactivated by ultraviolet light (Luria, 1947). The R.I. phage is sedimented in the centrifuge at the same rate as active phage. It is therefore about the same size as the active phage. The R.I. phage is most stable in pH 7, 5 per cent peptone, and may be kept in this solution for weeks at 0 degrees C. The rate of digestion of R.I. phage by trypsin, chymotrypsin, or desoxyribonuclease is about the same as that of active phage (Northrop, 1955 a). Effect of Various Substances on the Formation of R.I. Phage.- There is an equilibrium between R.I. phage and active phage. The R.I. form is the stable one in dilute salt solution, pH 5 to 6.5 and at low temperature (<20 degrees C.). At pH >6.5, in dilute salt solution, the R.I. phage changes to the active form. The cycle, active right harpoon over left harpoon inactive phage, may be repeated many times at 0 degrees C. by changing the pH of the solution back and forth between pH 7 and pH 6. Irreversible inactivation is caused by distilled water, some heavy metals, concentrated urea or quanidine solutions, and by l-arginine. Reversible inactivation is prevented by all salts tested (except those causing irreversible inactivation, above). The concentration required to prevent R.I. is lower, the higher the valency of either the anion or cation. There are great differences, however, between salts of the same valency, so that the chemical nature as well as the valency is important. Peptone, urea, and the amino acids, tryptophan, leucine, isoleucine, methionine, asparagine, dl-cystine, valine, and phenylalanine, stabilize the system at pH 7, so that no change occurs if a mixture of R.I. and active phage is added to such solutions. The active phage remains active and the R.I. phage remains inactive. The R.I. phage in pH 7 peptone becomes active if the pH is changed to 5.0. This does not occur in solutions of urea or the amino acids which stabilize at pH 7.0. Kinetics of Reversible Inactivation.- The inactivation is too rapid, even at 0 degrees to allow the determination of an accurate time-inactivation curve. The rate is independent of the phage concentration and is complete in a few seconds, even in very dilute suspensions containing <1 x 10(4) particles/ml. This result rules out any type of bimolecular reaction, or any precipitation or agglutination mechanism, since the minimum theoretical time for precipitation (or agglutination) of a suspension of particles in a concentration of only 1 x 10(4) per ml. would be about 300 days even though every collision were effective. Mechanism of Salt Reactivation.- Addition of varying concentrations of MgSO(4) (or many other salts) to a suspension of either active or R.I. phage in 0.01 M, pH 6 acetate buffer results in the establishment of an equilibrium ratio for active/R.I. phage. The higher the concentration of salt, the larger proportion of the phage is active. The results, with MgSO(4), are in quantitative agreement with the following reaction: See PDF for Equation Effect of Temperature.- The rate of inactivation is too rapid to be measured with any accuracy, even at 0 degrees C. The rate of reactivation in pH 5 peptone, at 0 and 10 degrees , was measured and found to have a temperature coefficient Q(10) = 1.5 corresponding to a value of E (Arrhenius' constant) of 6500 cal. mole(-1). This agrees very well with the temperature coefficient for the reactivation of denatured soy bean trypsin inhibitor (Kunitz, 1948). The equilibrium between R.I. and active phage is shifted toward the active side by lowering the temperature. The ratio R.I.P./AP is 4.7 at 15 degrees and 2.8 at 2 degrees . This corresponds to a change in free energy of -600 cal. mole(-1) and a heat of reaction of 11,000. These values are much lower than the comparative one for trypsin (Anson and Mirsky, 1934 a) or soy bean trypsin inhibitor (Kunitz, 1948). Neither the inactivation nor the reactivation reactions are affected by light. The results in general indicate that there is an equilibrium between active and R.I. phage. The R.I. phage is probably an intermediate step in the formation of inactive phage. The equilibrium is shifted to the active side by lowering the temperature, adjusting the pH to 7-8 (except in the presence of high concentrations of peptone), raising the salt concentration, or increasing the valency of the ions present. The reaction may be represented by the following: See PDF for Equation The assumption that the active/R.I. phage equilibrium represents an example of native/denatured protein equilibrium predicts all the results qualitatively. Quantitatively, however, it fails to predict the relative rate of digestion of the two forms by trypsin or chymotrypsin, and also the effect of temperature on the equilibrium.
可逆失活(R.I.)噬菌体的制备。- 如果巨大芽孢杆菌噬菌体(任何类型或处于任何纯化阶段)悬浮于pH 5 - 6的稀盐溶液中,它会完全失活;即,它不会形成噬菌斑,或与敏感生物体混合时不会产生更多噬菌体(诺思罗普,1954年)。当噬菌体加入到稀盐溶液中时就会发生失活。如果将失活噬菌体在pH 7蛋白胨中的悬浮液滴定至pH 5并使其静置,活性会逐渐恢复。因此,这种失活是可逆的。
R.I.噬菌体的特性。- R.I.噬菌体被敏感细胞吸附的速率与活性噬菌体大致相同。它会杀死细胞,但不会产生活性噬菌体。因此,R.I.噬菌体具有噬菌体“空壳”(赫里奥特,1951年)或大肠杆菌素(格拉蒂亚,1925年)或被紫外线灭活的噬菌体(卢里亚,1947年)的特性。R.I.噬菌体在离心机中沉降的速率与活性噬菌体相同。因此,它的大小与活性噬菌体大致相同。R.I.噬菌体在pH 7、5%蛋白胨中最稳定,可在0℃下在该溶液中保存数周。胰蛋白酶、糜蛋白酶或脱氧核糖核酸酶对R.I.噬菌体的消化速率与活性噬菌体大致相同(诺思罗普,1955a)。
各种物质对R.I.噬菌体形成的影响。- R.I.噬菌体和活性噬菌体之间存在平衡。在稀盐溶液(pH 5至6.5)和低温(<20℃)下,R.I.形式是稳定的。在稀盐溶液中,pH >6.5时,R.I.噬菌体转变为活性形式。通过在0℃下将溶液的pH在pH 7和pH 6之间来回变化,活性⇌非活性噬菌体的循环可以重复多次。蒸馏水、一些重金属、浓尿素或胍溶液以及L - 精氨酸会导致不可逆失活。所有测试的盐(除了上述导致不可逆失活的盐)都能防止可逆失活。防止R.I.所需的浓度越低,阴离子或阳离子的价数越高。然而,相同价数的盐之间存在很大差异,因此化学性质以及价数都很重要。蛋白胨、尿素以及氨基酸色氨酸、亮氨酸、异亮氨酸、蛋氨酸、天冬酰胺、dl - 胱氨酸、缬氨酸和苯丙氨酸在pH 7时能稳定该系统,因此如果将R.I.和活性噬菌体的混合物加入到此类溶液中不会发生变化。活性噬菌体保持活性,R.I.噬菌体保持失活。pH 7蛋白胨中的R.I.噬菌体如果pH变为5.0就会变得有活性。在pH 7.0时稳定的尿素或氨基酸溶液中不会发生这种情况。
可逆失活的动力学。- 失活速度太快,即使在0℃也无法确定准确的时间 - 失活曲线。该速率与噬菌体浓度无关,即使在每毫升含有<1×10⁴个颗粒的非常稀的悬浮液中,也能在几秒钟内完成。这个结果排除了任何类型的双分子反应,或任何沉淀或凝集机制,因为即使每次碰撞都有效,每毫升仅含1×10⁴个颗粒的悬浮液沉淀(或凝集)的理论最短时间也约为300天。
盐再活化的机制。- 向0.01M、pH 6乙酸盐缓冲液中活性或R.I.噬菌体的悬浮液中加入不同浓度的MgSO₄(或许多其他盐)会导致活性/R.I.噬菌体建立平衡比例。盐浓度越高,活性噬菌体的比例越大。MgSO₄的结果与以下反应在定量上一致:见PDF中的方程式
温度的影响。- 失活速率太快,即使在0℃也无法准确测量。在0℃和10℃下测量了pH 5蛋白胨中的再活化速率,发现温度系数Q₁₀ = 1.5,对应于E(阿累尼乌斯常数)值为6500卡·摩尔⁻¹。这与变性大豆胰蛋白酶抑制剂的再活化温度系数非常吻合(昆茨,1948年)。降低温度会使R.I.和活性噬菌体之间的平衡向活性一侧移动。在15℃时R.I.P./AP的比例为4.7,在2℃时为2.8。这对应于 - 600卡·摩尔⁻¹的自由能变化和11,000的反应热。这些值远低于胰蛋白酶(安森和米尔斯基,1934a)或大豆胰蛋白酶抑制剂(昆茨,1948年)的比较值。失活和再活化反应都不受光的影响。总体结果表明活性和R.I.噬菌体之间存在平衡。R.I.噬菌体可能是失活噬菌体形成过程中的一个中间步骤。通过降低温度、将pH调节至7 - 8(除了在高浓度蛋白胨存在的情况下)、提高盐浓度或增加存在离子的价数,平衡会向活性一侧移动。该反应可以用以下式子表示:见PDF中的方程式
活性/R.I.噬菌体平衡代表天然/变性蛋白质平衡的假设定性地预测了所有结果。然而,在定量上,它无法预测两种形式被胰蛋白酶或糜蛋白酶消化率的相对速率,以及温度对平衡的影响。