Suppr超能文献

能量、量子和视觉。

ENERGY, QUANTA, AND VISION.

机构信息

Laboratory of Biophysics, Columbia University, New York.

出版信息

J Gen Physiol. 1942 Jul 20;25(6):819-40. doi: 10.1085/jgp.25.6.819.

Abstract
  1. Direct measurements of the minimum energy required for threshold vision under optimal physiological conditions yield values between 2.1 and 5.7 x 10(-10) ergs at the cornea, which correspond to between 54 and 148 quanta of blue-green light. 2. These values are at the cornea. To yield physiologically significant data they must be corrected for corneal reflection, which is 4 per cent; for ocular media absorption, which is almost precisely 50 per cent; and for retinal transmission, which is at least 80 per cent. Retinal transmission is derived from previous direct measurements and from new comparisons between the percentage absorption spectrum of visual purple with the dim-vision luminosity function. With these three corrections, the range of 54 to 148 quanta at the cornea becomes as an upper limit 5 to 14 quanta actually absorbed by the retinal rods. 3. This small number of quanta, in comparison with the large number of rods (500) involved, precludes any significant two quantum absorptions per rod, and means that in order to produce a visual effect, one quantum must be absorbed by each of 5 to 14 rods in the retina. 4. Because this number of individual events is so small, it may be derived from an independent statistical study of the relation between the intensity of a light flash and the frequency with which it is seen. Such experiments give values of 5 to 8 for the number of critical events involved at the threshold of vision. Biological variation does not alter these numbers essentially, and the agreement between the values measured directly and those derived from statistical considerations is therefore significant. 5. The results clarify the nature of the fluctuations shown by an organism in response to a stimulus. The general assumption has been that the stimulus is constant and the organism variable. The present considerations show, however, that at the threshold it is the stimulus which is variable, and that the properties of its variation determine the fluctuations found between response and stimulus.
摘要
  1. 在最佳生理条件下,阈下视觉所需的最小能量的直接测量值在角膜处产生 2.1 到 5.7 x 10(-10) 尔格的值,相当于 54 到 148 个蓝绿光量子。

  2. 这些值是在角膜处的。为了得到有生理意义的数据,它们必须校正角膜反射,其值为 4%;校正眼内介质吸收,其值几乎正好是 50%;校正视网膜传输,其值至少是 80%。视网膜传输是从前人直接测量值和视紫红质的吸收光谱与暗视力发光函数之间的新比较中得出的。经过这三次校正,角膜处 54 到 148 个量子的范围上限成为视网膜棒状细胞实际吸收的 5 到 14 个量子。

  3. 与所涉及的大量棒状细胞(500 个)相比,这个小数量的量子排除了每个棒状细胞吸收两个量子的任何显著吸收,这意味着为了产生视觉效果,每个视网膜棒状细胞必须吸收一个量子。

  4. 由于单个事件的数量如此之小,它可以从光闪烁强度与可见频率之间关系的独立统计研究中得出。这些实验给出了视觉阈限所涉及的关键事件数量为 5 到 8 的值。生物变异不会从根本上改变这些数字,因此,直接测量值和统计考虑值之间的一致性是有意义的。

  5. 这些结果阐明了生物体对刺激的波动的性质。一般的假设是刺激是恒定的,而生物体是可变的。然而,目前的考虑表明,在阈限处,是刺激在变化,其变化的性质决定了在响应和刺激之间发现的波动。

相似文献

1
ENERGY, QUANTA, AND VISION.
J Gen Physiol. 1942 Jul 20;25(6):819-40. doi: 10.1085/jgp.25.6.819.
2
The simple perfection of quantum correlation in human vision.
Prog Neurobiol. 2006 Jan;78(1):38-60. doi: 10.1016/j.pneurobio.2005.11.006. Epub 2005 Dec 27.
3
4
The quantic and statistical bases of visual excitation.
J Gen Physiol. 1948 Jan 30;31(3):269-90. doi: 10.1085/jgp.31.3.269.
5
QUANTUM RELATIONS OF THE RAT ELECTRORETINOGRAM.
J Gen Physiol. 1963 Jul;46(6):1267-86. doi: 10.1085/jgp.46.6.1267.
6
The interplay o light and heat in bleaching rhodopsin.
J Gen Physiol. 1952 Jan;35(3):495-517. doi: 10.1085/jgp.35.3.495.
7
Functional characteristics of lateral interactions between rods in the retina of the snapping turtle.
J Physiol. 1976 Jul;259(2):251-82. doi: 10.1113/jphysiol.1976.sp011465.
8
Noise and the absolute thresholds of cone and rod vision.
Vision Res. 1992 May;32(5):853-66. doi: 10.1016/0042-6989(92)90028-h.
9
Behavioural and physiological limits to vision in mammals.
Philos Trans R Soc Lond B Biol Sci. 2017 Apr 5;372(1717). doi: 10.1098/rstb.2016.0072.
10
Counting every quantum.
J Physiol. 1972 May;223(1):131-50. doi: 10.1113/jphysiol.1972.sp009838.

引用本文的文献

1
Sensory population activity reveals downstream confidence computations in the primate visual system.
Proc Natl Acad Sci U S A. 2025 Jul;122(26):e2426441122. doi: 10.1073/pnas.2426441122. Epub 2025 Jun 25.
3
How distinct sources of nuisance variability in natural images and scenes limit human stereopsis.
PLoS Comput Biol. 2025 Apr 15;21(4):e1012945. doi: 10.1371/journal.pcbi.1012945. eCollection 2025 Apr.
4
Optoretinography reveals rapid rod photoreceptor movement upon photoisomerization.
bioRxiv. 2025 Mar 25:2025.03.22.644466. doi: 10.1101/2025.03.22.644466.
5
Visual pigments underlie the sensitivity difference between day and night vision.
Proc Natl Acad Sci U S A. 2025 Jan 21;122(3):e2424071122. doi: 10.1073/pnas.2424071122. Epub 2025 Jan 13.
6
Dark continuous noise from visual pigment as a major mechanism underlying rod-cone difference in light sensitivity.
Proc Natl Acad Sci U S A. 2024 Dec 17;121(51):e2418031121. doi: 10.1073/pnas.2418031121. Epub 2024 Dec 10.
7
Feature-specific divisive normalization improves natural image encoding for depth perception.
bioRxiv. 2024 Sep 19:2024.09.05.611536. doi: 10.1101/2024.09.05.611536.
8
Signal Detection Theoretic Estimates of the Murine Absolute Visual Threshold Are Independent of Decision Bias.
eNeuro. 2024 Oct 9;11(10). doi: 10.1523/ENEURO.0222-24.2024. Print 2024 Oct.
9
Vagus nerve stimulation recruits the central cholinergic system to enhance perceptual learning.
Nat Neurosci. 2024 Nov;27(11):2152-2166. doi: 10.1038/s41593-024-01767-4. Epub 2024 Sep 16.
10
Illumination by short-wavelength light inside the blind spot decreases light detectability.
iScience. 2024 Jul 30;27(9):110612. doi: 10.1016/j.isci.2024.110612. eCollection 2024 Sep 20.

本文引用的文献

1
ENERGY AT THE THRESHOLD OF VISION.
Science. 1941 Jun 20;93(2425):585-7. doi: 10.1126/science.93.2425.585.
2
The relation between concentration of visual purple and retinal sensitivity to light during dark adaptation.
J Physiol. 1939 Jun 14;96(1):31-44. doi: 10.1113/jphysiol.1939.sp003755.
3
On the mode of action of visual purple on the rod cell.
J Physiol. 1938 Dec 14;94(3):430-40. doi: 10.1113/jphysiol.1938.sp003692.
4
The absorption spectra of visual purple and of indicator yellow.
J Physiol. 1937 Jun 3;89(4):331-58. doi: 10.1113/jphysiol.1937.sp003482.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验