Suppr超能文献

光与热在视紫红质漂白过程中的相互作用。

The interplay o light and heat in bleaching rhodopsin.

作者信息

ST GEORGE R C C

出版信息

J Gen Physiol. 1952 Jan;35(3):495-517. doi: 10.1085/jgp.35.3.495.

Abstract

Rhodopsin, the pigment of the retinal rods, can be bleached either by light or by high temperature. Earlier work had shown that when white light is used the bleaching rate does not depend on temperature, and so must be independent of the internal energy of the molecule. On the other hand thermal bleaching in the dark has a high temperature dependence from which one can calculate that the reaction has an apparent activation energy of 44 kg. cal. per mole. It has now been shown that the bleaching rate of rhodopsin becomes temperature-dependent in red light, indicating that light and heat cooperate in activating the molecule. Apparently thermal energy is needed for bleaching at long wave lengths where the quanta are not sufficiently energy-rich to bring about bleaching by themselves. The temperature dependence appears at 590 mmicro. This is the longest wave length at which bleaching by light proceeds without thermal activation, and corresponds to a quantum energy of 48.5 kg. cal. per mole. This value of the minimum energy to bleach rhodopsin by light alone is in agreement with the activation energy of thermal bleaching in the dark. At wave lengths between 590 and 750 mmicro, the longest wave length at which the bleaching rate was fast enough to study, the sum of the quantum energy and of the activation energy calculated from the temperature coefficients remains between 44 and 48.5 kg. cal. This result shows that in red light the energy deficit of the quanta can be made up by a contribution of thermal energy from the internal degrees of freedom of the rhodopsin molecule. The absorption spectrum of rhodopsin, which is not markedly temperature-dependent at shorter wave lengths, also becomes temperature-dependent in red light of wave lengths longer than about 570 to 590 mmicro. The temperature dependence of the bleaching rate is at least partly accounted for by the temperature coefficient of absorption. There is some evidence that the temperature coefficient of bleaching is somewhat greater than the temperature coefficient of absorption at wave lengths longer than 590 mmicro;. This means that the thermal energy of the molecule is a more critical factor in bleaching than in absorption. It shows that some of the molecules which absorb energy-deficient quanta of red light are unable to supply the thermal component of the activation energy needed for bleaching, so bringing about a fall in the quantum efficiency. The experiments show that there is a gradual transition between the activation of rhodopsin by light and the activation by internal energy. It is suggested that energy can move freely between the prosthetic group and the protein moiety of the molecule. In this way a part of the large amount of energy in the internal degrees of freedom of rhodopsin could become available to assist in thermal activation. Assuming that the minimum energy required for bleaching is 48.5 kg. cal., an equation familiar in the study of unimolecular reaction has been used to estimate the number of internal degrees of freedom, n, involved in supplying the thermal component of the activation energy when rhodopsin is bleached in red light. It was found that n increases from 2 at 590 mmicro to a minimum value of 15 at 750 mmicro. One wonders what value n has at 1050 mmicro, where vision still persists, and where rhodopsin molecules may supply some 16 kg. cal. of thermal energy per mole in order to make up for the energy deficit of the quanta.

摘要

视紫红质是视网膜杆状细胞的色素,它可被光或高温漂白。早期的研究表明,当使用白光时,漂白速率与温度无关,因此一定与分子的内能无关。另一方面,暗处的热漂白对温度有很强的依赖性,据此可以计算出该反应的表观活化能为每摩尔44千卡。现已表明,视紫红质在红光下的漂白速率变得与温度有关,这表明光和热协同作用激活分子。显然,在长波长下漂白需要热能,因为这些量子自身的能量不足以引起漂白。温度依赖性在590微米处出现。这是光漂白在无热激活情况下进行的最长波长,对应于每摩尔48.5千卡的量子能量。仅靠光漂白视紫红质的这个最小能量值与暗处热漂白的活化能一致。在590至750微米之间的波长,即漂白速率足够快以便进行研究的最长波长,量子能量与根据温度系数计算出的活化能之和保持在44至48.5千卡之间。这一结果表明,在红光下,量子的能量不足可由视紫红质分子内部自由度的热能贡献来弥补。视紫红质的吸收光谱在较短波长下对温度的依赖性不明显,但在波长大于约570至590微米的红光下也变得与温度有关。漂白速率的温度依赖性至少部分是由吸收的温度系数引起的。有一些证据表明,在波长大于590微米时,漂白的温度系数略大于吸收的温度系数。这意味着分子的热能在漂白中比在吸收中是一个更关键的因素。这表明一些吸收了能量不足的红光量子的分子无法提供漂白所需活化能的热成分,从而导致量子效率下降。实验表明,视紫红质由光激活和由内能激活之间存在逐渐过渡。有人认为能量可以在分子的辅基和蛋白质部分之间自由移动。通过这种方式,视紫红质内部自由度中的大量能量的一部分可用于协助热激活。假设漂白所需的最小能量为48.5千卡,一个在单分子反应研究中常用的方程已被用于估计当视紫红质在红光下漂白时,参与提供活化能热成分的内部自由度的数量n。发现n从590微米处的2增加到750微米处的最小值15。人们不禁要问,在1050微米处n的值是多少,在该波长下视觉仍然存在,并且视紫红质分子每摩尔可能提供约16千卡的热能以弥补量子的能量不足。

相似文献

1
The interplay o light and heat in bleaching rhodopsin.
J Gen Physiol. 1952 Jan;35(3):495-517. doi: 10.1085/jgp.35.3.495.
2
Cis-trans isomers of vitamin A and retinene in the rhodopsin system.
J Gen Physiol. 1952 Nov;36(2):269-315. doi: 10.1085/jgp.36.2.269.
3
Iodopsin.
J Gen Physiol. 1955 May 20;38(5):623-81. doi: 10.1085/jgp.38.5.623.
4
Rhodopsin kinetics in the human eye.
J Physiol. 1971 Sep;217(2):447-71. doi: 10.1113/jphysiol.1971.sp009580.
5
Effect of eye closures and openings on photostasis in albino rats.
Invest Ophthalmol Vis Sci. 1998 Mar;39(3):603-9.
6
A new photosensitive pigment of the euryhaline teleost, Gillichthys mirabilis.
J Gen Physiol. 1956 Nov 20;40(2):233-49. doi: 10.1085/jgp.40.2.233.
9
Bleaching of mouse rods: microspectrophotometry and suction-electrode recording.
J Physiol. 2012 May 15;590(10):2353-64. doi: 10.1113/jphysiol.2012.228627. Epub 2012 Mar 25.

引用本文的文献

1
Sex Hormones Influence the Helmholtz-Kohlrausch Effect.
J Ophthalmic Vis Res. 2024 Mar 14;19(1):71-81. doi: 10.18502/jovr.v19i1.15441. eCollection 2024 Jan-Mar.
2
Vitamin A aldehyde-taurine adduct and the visual cycle.
Proc Natl Acad Sci U S A. 2020 Oct 6;117(40):24867-24875. doi: 10.1073/pnas.2005714117. Epub 2020 Sep 21.
3
A Novel Method for Mouse Retinal Temperature Determination Based on ERG Photoresponses.
Ann Biomed Eng. 2017 Oct;45(10):2360-2372. doi: 10.1007/s10439-017-1872-y. Epub 2017 Jun 15.
5
The Physical Mechanism for Retinal Discrete Dark Noise: Thermal Activation or Cellular Ultraweak Photon Emission?
PLoS One. 2016 Mar 7;11(3):e0148336. doi: 10.1371/journal.pone.0148336. eCollection 2016.
6
Advances in understanding the molecular basis of the first steps in color vision.
Prog Retin Eye Res. 2015 Nov;49:46-66. doi: 10.1016/j.preteyeres.2015.07.004. Epub 2015 Jul 15.
7
Human infrared vision is triggered by two-photon chromophore isomerization.
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):E5445-54. doi: 10.1073/pnas.1410162111. Epub 2014 Dec 1.
8
Activation of visual pigments by light and heat.
Science. 2011 Jun 10;332(6035):1307-12. doi: 10.1126/science.1200172.
9
Thermal activation and photoactivation of visual pigments.
Biophys J. 2004 Jun;86(6):3653-62. doi: 10.1529/biophysj.103.035626.
10
The role of sulfhydryl groups in the bleaching and synthesis of rhodopsin.
J Gen Physiol. 1952 May;35(5):797-821. doi: 10.1085/jgp.35.5.797.

本文引用的文献

1
The light reaction in the bleaching of rhodopsin.
Science. 1950 Feb 17;111(2877):179-81. doi: 10.1126/science.111.2877.179.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验