Suppr超能文献

胶棉膜的结构及其电性能:VIII. 关于胶棉的酸性性质及其与膜结构和活性的关系的定量研究。

THE STRUCTURE OF THE COLLODION MEMBRANE AND ITS ELECTRICAL BEHAVIOR : VIII. QUANTITATIVE STUDIES CONCERNING THE ACIDIC PROPERTIES OF COLLODION AND THEIR CORRELATION WITH MEMBRANE STRUCTURE AND ACTIVITY.

机构信息

Department of Physiology, University of Minnesota, Minneapolis.

出版信息

J Gen Physiol. 1944 May 20;27(5):433-49. doi: 10.1085/jgp.27.5.433.

Abstract
  1. The electrochemical behavior ("activity") of collodion membranes depends upon acidic, dissociable groups located in the interstices of the membranes. The active groups can be determined by base exchange measurements. High base exchange capacity is always found with preparations of great "electrochemical activity;" medium and low base exchange capacities occur with electrochemically active as well as with inactive preparations. The observed base exchange capacity is determined by two factors: the inherent acidity of the collodion (its mean equivalent weight) and the submicroscopic micellar structure of the collodion. A comparison of the base exchange capacity of various collodion preparations and their inherent acidities therefore allows certain conclusions to be drawn concerning the relative availability of the micellar surfaces in the different preparations. 2. The inherent acidity of various collodion preparations, their "acid number," was determined by electrometric titration. Collodion in the acidic state, i.e. after exchange of all other cations for H(+) ions, was titrated in an organic solvent mixture with alcoholic KOH using a quinhydrone electrode. Details of the experimental procedure are given in the paper. The acid numbers, expressed in milliliters of 0.01 N KOH per gram dry collodion, vary from 1.0 for a highly purified collodion preparation of very low electrochemical activity to 3.3 for a highly oxidized sample of very high activity. Acid numbers of about 1.5 (corresponding to an equivalent weight of about 67,000) are found both with inactive commercial and with fairly active oxidized preparations. The base exchange capacity of the same preparations in the fibrous state as measured after 48 hours of exchange time varies from 0.0013 ml. 0.01 N NaOH per gm. dry collodion for the most inactive preparation up to 0.26 ml. 0.01 N NaOH per gm. for the most active preparation. Thus the acid numbers over the whole range investigated differ only in the ratio of 1:3.3, whereas the base exchange values differ in the range of 1:200. 3. In the inactive preparation only one in 770 acid groups is available for base exchange, in the most active collodion one group in 13; values between these extremes are found with commercial and alcohol purified oxidized preparations. 4. The high base exchange capacity of the electrochemically active preparations is not so much due to their higher acid number as to their more open structure. This difference in structure is ascribed to the presence of a small fraction of low molecular weight material which inhibits normal formation and arrangement of the micelles. 5. Short time base exchange experiments with fibrous collodion indicate that the number of acid groups available for the typical electrochemical membrane functions may be estimated to be about 50 to 1000 times less numerous than those found in the 48 hour base exchange experiments. It is estimated that in membranes prepared even from the most active collodion not more than one in 500 acid groups may be available for the typical membrane functions; with the less active preparations this ratio is estimated to be as high as one in 1,000,000 or more.
摘要
  1. 硝棉膜的电化学行为(“活性”)取决于膜间存在的可离解的酸性基团。活性基团可以通过碱交换测量来确定。高碱交换容量总是与具有高“电化学活性”的制剂一起出现;中等和低碱交换容量既存在于电化学活性制剂中,也存在于非活性制剂中。观察到的碱交换容量取决于两个因素:硝棉的固有酸度(其平均当量重量)和硝棉的亚微观胶束结构。因此,比较各种硝棉制剂的碱交换容量及其固有酸度,可以得出关于不同制剂中胶束表面相对可用性的某些结论。

  2. 通过电滴定法测定各种硝棉制剂的固有酸度,即“酸值”。将处于酸性状态的硝棉(即在所有其他阳离子被 H(+)离子交换后),在有机溶剂混合物中用醇 KOH 滴定,使用醌氢醌电极。实验步骤的详细信息在论文中给出。酸值,以毫升 0.01N KOH 表示,每克干燥硝棉的用量,从高度纯化的低电化学活性硝棉制剂的 1.0 变化到高度氧化的高活性制剂的 3.3。具有约 1.5 的酸值(相当于约 67,000 的当量重量)在非活性商业制剂和相当活性的氧化制剂中都有发现。在交换时间为 48 小时后,相同制剂在纤维状态下的碱交换容量从最不活跃的制剂的 0.0013 毫升变化到最活跃的制剂的 0.26 毫升。0.01NNaOH 每克。干燥的硝棉。因此,在整个研究范围内,酸值仅以 1:3.3 的比例不同,而碱交换值的范围为 1:200。

  3. 在不活跃的制剂中,只有 1/770 的酸基可用于碱交换,而在最活跃的硝棉中,1/13 的酸基可用于碱交换,商业和醇纯化的氧化制剂中则介于这两个极端之间。

  4. 电化学活性制剂的高碱交换容量与其较高的酸值无关,而与其更开放的结构有关。这种结构差异归因于存在一小部分低分子量物质,它抑制了胶束的正常形成和排列。

  5. 对纤维状硝棉的短期碱交换实验表明,用于典型电化学膜功能的可用酸基数量可估计为典型电化学膜功能的可用酸基数量可估计为典型电化学膜功能的可用酸基数量的 50 到 1000 倍。据估计,即使是由最活跃的硝棉制备的膜,也只有不到 1/500 的酸基可用于典型的膜功能;对于不那么活跃的制剂,这个比例估计高达 1/1,000,000 或更高。

相似文献

本文引用的文献

4
NEW EXPERIMENTS ON ANOMALOUS OSMOSIS.
J Gen Physiol. 1940 Sep 20;24(1):1-5. doi: 10.1085/jgp.24.1.1.
5
MICROMETER BURETTE.
Science. 1942 Sep 4;96(2488):237-8. doi: 10.1126/science.96.2488.237.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验