Center for Reticular Chemistry at California NanoSystems Institute, Department of Chemistry and Biochemistry, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, USA.
Acc Chem Res. 2010 Jan 19;43(1):58-67. doi: 10.1021/ar900116g.
Zeolites are one of humanity's most important synthetic products. These aluminosilicate-based materials represent a large segment of the global economy. Indeed, the value of zeolites used in petroleum refining as catalysts and in detergents as water softeners is estimated at $350 billion per year. A major current goal in zeolite chemistry is to create a structure in which metal ions and functionalizable organic units make up an integral part of the framework. Such a structure, by virtue of the flexibility with which metal ions and organic moieties can be varied, is viewed as a key to further improving zeolite properties and accessing new applications. Recently, it was recognized that the Si-O-Si preferred angle in zeolites (145 degrees ) is coincident with that of the bridging angle in the M-Im-M fragment (where M is Zn or Co and Im is imidazolate), and therefore it should be possible to make new zeolitic imidazolate frameworks (ZIFs) with topologies based on those of tetrahedral zeolites. This idea was successful and proved to be quite fruitful; within the last 5 years over 90 new ZIF structures have been reported. The recent application of high-throughput synthesis and characterization of ZIFs has expanded this structure space significantly: it is now possible to make ZIFs with topologies previously unknown in zeolites, in addition to mimicking known structures. In this Account, we describe the general preparation of crystalline ZIFs, discussing the methods that have been developed to create and analyze the variety of materials afforded. We include a comprehensive list of all known ZIFs, including structure, topology, and pore metrics. We also examine how complexity might be introduced into new structures, highlighting how link-link interactions might be exploited to effect particular cage sizes, create polarity variations between pores, or adjust framework robustness, for example. The chemical and thermal stability of ZIFs permit many applications, such as the capture of CO(2) and its selective separation from industrially relevant gas mixtures. Currently, ZIFs are the best porous materials for the selective capture of CO(2); furthermore, they show exceptionally high capacity for CO(2) among adsorbents operating by physisorption. The stability of ZIFs has also enabled organic transformations to be carried out on the crystals, yielding covalently functionalized isoreticular structures wherein the topology, crystallinity, and porosity of the ZIF structure are maintained throughout the reaction process. These reactions, being carried out on macroscopic crystals that behave as single molecules, have enabled the realization of the chemist's dream of using "crystals as molecules", opening the way for the application of the extensive library of organic reactions to the functionalization of useful extended porous structures.
沸石是人类最重要的合成产品之一。这些基于铝硅酸盐的材料构成了全球经济的重要组成部分。事实上,作为石油精炼催化剂和洗涤剂水软化剂使用的沸石每年的价值估计为 3500 亿美元。沸石化学的一个当前主要目标是创造一种结构,其中金属离子和可功能化的有机单元构成框架的一个组成部分。这种结构由于金属离子和有机部分的可变性,被视为进一步改善沸石性能和开拓新应用的关键。最近,人们认识到沸石中的 Si-O-Si 优选角度(145 度)与 M-Im-M 片段的桥接角(其中 M 是 Zn 或 Co,Im 是咪唑)一致,因此应该有可能制造基于四面体沸石拓扑结构的新型沸石咪唑酯骨架(ZIF)。这个想法是成功的,并且被证明是非常富有成效的;在过去的 5 年中,已经报道了超过 90 种新的 ZIF 结构。最近,高通量合成和表征 ZIF 的应用极大地扩展了这个结构空间:除了模仿已知结构外,现在还可以制造沸石中以前未知的拓扑结构的 ZIF。在本报告中,我们描述了结晶 ZIF 的一般制备方法,讨论了为创建和分析所提供的各种材料而开发的方法。我们包括了所有已知 ZIF 的综合清单,包括结构、拓扑和孔度。我们还研究了如何向新结构引入复杂性,强调如何利用链接-链接相互作用来影响特定的笼尺寸,在孔之间产生极性变化,或调整框架的稳健性,例如。ZIF 的化学和热稳定性允许许多应用,例如捕获 CO(2)并从工业相关的气体混合物中选择性分离。目前,ZIF 是用于选择性捕获 CO(2)的最佳多孔材料;此外,它们在通过物理吸附操作的吸附剂中表现出对 CO(2)的极高容量。ZIF 的稳定性还使得可以在晶体上进行有机转化,从而得到共价功能化的等结构沸石,其中 ZIF 结构的拓扑、结晶度和孔隙率在整个反应过程中得以保持。这些反应是在作为单个分子行为的宏观晶体上进行的,使化学家实现了“将晶体用作分子”的梦想,为将广泛的有机反应库应用于有用的扩展多孔结构的功能化开辟了道路。