Wang Bo, Côté Adrien P, Furukawa Hiroyasu, O'Keeffe Michael, Yaghi Omar M
Center for Reticular Chemistry, Department of Chemistry and Biochemistry, University of California-Los Angeles, 607 East Charles E. Young Drive, Los Angeles, California 90095, USA.
Nature. 2008 May 8;453(7192):207-11. doi: 10.1038/nature06900.
Zeolitic imidazolate frameworks (ZIFs) are porous crystalline materials with tetrahedral networks that resemble those of zeolites: transition metals (Zn, Co) replace tetrahedrally coordinated atoms (for example, Si), and imidazolate links replace oxygen bridges. A striking feature of these materials is that the structure adopted by a given ZIF is determined by link-link interactions, rather than by the structure directing agents used in zeolite synthesis. As a result, systematic variations of linker substituents have yielded many different ZIFs that exhibit known or predicted zeolite topologies. The materials are chemically and thermally stable, yet have the long-sought-after design flexibility offered by functionalized organic links and a high density of transition metal ions. Here we report the synthesis and characterization of two porous ZIFs-ZIF-95 and ZIF-100-with structures of a scale and complexity previously unknown in zeolites. The materials have complex cages that contain up to 264 vertices, and are constructed from as many as 7,524 atoms. As expected from the adsorption selectivity recently documented for other members of this materials family, both ZIFs selectively capture carbon dioxide from several different gas mixtures at room temperature, with ZIF-100 capable of storing 28 litres per litre of material at standard temperature and pressure. These characteristics, combined with their high thermal and chemical stability and ease of fabrication, make ZIFs promising candidate materials for strategies aimed at ameliorating increasing atmospheric carbon dioxide levels.
沸石咪唑酯骨架材料(ZIFs)是具有四面体网络的多孔晶体材料,其类似于沸石的网络结构:过渡金属(锌、钴)取代了四面体配位的原子(例如硅),咪唑酯连接取代了氧桥。这些材料的一个显著特点是,特定ZIF所采用的结构是由连接体-连接体相互作用决定的,而不是由沸石合成中使用的结构导向剂决定。因此,连接体取代基的系统变化产生了许多不同的ZIFs,它们呈现出已知或预测的沸石拓扑结构。这些材料具有化学和热稳定性,但具有功能化有机连接体提供的长期以来一直追求的设计灵活性以及高密度的过渡金属离子。在此,我们报告了两种多孔ZIFs——ZIF-95和ZIF-100的合成与表征,它们具有沸石中前所未有的尺度和复杂性的结构。这些材料具有复杂的笼状结构,包含多达264个顶点,由多达7524个原子构成。正如最近该材料家族其他成员的吸附选择性所预期的那样,这两种ZIFs在室温下都能从几种不同的气体混合物中选择性地捕获二氧化碳,在标准温度和压力下,ZIF-100每升材料能够储存28升二氧化碳。这些特性,再加上它们的高热稳定性和化学稳定性以及易于制备,使得ZIFs成为旨在缓解大气中二氧化碳水平上升的策略的有前途的候选材料。