Yanagida Shozo, Yu Youhai, Manseki Kazuhiro
Center for Advanced Science and Innovation, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871 Japan.
Acc Chem Res. 2009 Nov 17;42(11):1827-38. doi: 10.1021/ar900069p.
Dye-sensitized solar cells (DSSCs) are built from nanocrystalline anatase TiO(2) with a 101 crystal face (nc-TiO(2)) onto which a dye is absorbed, ruthenium complex sensitizers, fluid I(-)/I(3)(-) redox couples with electrolytes, and a Pt-coated counter electrode. DSSCs have now reached efficiencies as high as 11%, and G24 Innovation (Cardiff, U.K.) is currently manufacturing them for commercial use. These devices offer several distinct advantages. On the basis of the electron lifetime and diffusion coefficient in the nc-TiO(2) layer, DSSCs maintain a diffusion length on the order of several micrometers when the dyed-nc-TiO(2) porous layer is covered by redox electrolytes of lithium and/or imidazolium iodide and their polyiodide salts. The fluid iodide/iodine (I(-)/I(3)(-)) redox electrolytes can infiltrate deep inside the intertwined nc-TiO(2) layers, promoting the mobility of the nc-TiO(2) layers and serving as a hole-transport material of DSSCs. As a result, these materials eventually give a respectable photovoltaic performance. On the other hand, fluid I(-)/I(3)(-) redox shuttles have certain disadvantages: reduced performance control and long-term stability and incompatibility with some metallic component materials. The I(-)/I(3)(-) redox shuttle shows a significant loss in short circuit current density and a slight loss in open circuit voltage, particularly in highly viscous electrolyte-based DSSC systems. Iodine can also act as an oxidizing agent, corroding metals, such as the grid metal Ag and the Pt mediator on the cathode, especially in the presence of water and oxygen. In addition, the electrolytes (I(-)/I(3)(-)) can absorb visible light (lambda = approximately 430 nm), leading to photocurrent loss in the DSSC. Therefore, the introduction of iodide/iodine-free electrolytes or hole-transport materials (HTMs) could lead to cost-effective alternatives to TiO(2) DSSCs. In this Account, we discuss the iodide/iodine-free redox couple as a substitute for the fluid I(-)/I(3)(-) redox shuttle. We also review the adaptation of solid-state HTMs to the iodide/iodine-free solid-state DSSCs with an emphasis on their pore filling and charge mobility in devices and the relationship of those values to the performance of the resulting iodide/iodine-free DSSCs. We demonstrate how the structures of the sensitizing dye molecules and additives of lithium or imidazolium salts influence device performance. In addition, the self-organizing molecular interaction for electronic contact of HTMs to dye molecules plays an important role in unidirectional charge diffusion at interfaces. The poly(3,4-ethylenedioxythiophene) (PEDOT)-based DSSCs, which we obtain through photoelectrochemical polymerization (PEP) using 3-alkylthiophen-bearing ruthenium dye, HRS-1, and bis-EDOT, demonstrates the importance of nonbonding interface contact (e.g., pi-pi-stacking) for the successful inclusion of HTMs.
染料敏化太阳能电池(DSSC)由具有(101)晶面的纳米晶锐钛矿TiO₂(nc-TiO₂)构建而成,染料(钌配合物敏化剂)吸附在其表面,流体I⁻/I₃⁻氧化还原对与电解质组成电解液,还有一个镀铂的对电极。DSSC目前的效率已高达11%,英国加的夫的G24创新公司正在生产供商业使用的此类电池。这些器件具有几个明显的优势。基于电子在nc-TiO₂层中的寿命和扩散系数,当染色的nc-TiO₂多孔层被锂和/或碘化咪唑鎓及其多碘化物盐的氧化还原电解质覆盖时,DSSC的扩散长度保持在几微米量级。流体碘化物/碘(I⁻/I₃⁻)氧化还原电解质能够深入渗透到相互交织的nc-TiO₂层内部,促进nc-TiO₂层的迁移率,并作为DSSC的空穴传输材料。因此,这些材料最终能提供可观的光伏性能。另一方面,流体I⁻/I₃⁻氧化还原穿梭体存在某些缺点:性能控制降低、长期稳定性差以及与一些金属成分材料不兼容。I⁻/I₃⁻氧化还原穿梭体在短路电流密度方面有显著损失,开路电压略有损失,特别是在基于高粘性电解质的DSSC系统中。碘还可以作为氧化剂,腐蚀金属,如栅极金属银和阴极上的铂介质,尤其是在有水和氧气存在的情况下。此外,电解质(I⁻/I₃⁻)能够吸收可见光(波长λ≈430nm),导致DSSC中的光电流损失。因此,引入无碘化物/碘的电解质或空穴传输材料(HTM)可能会带来成本效益高的TiO₂ DSSC替代方案。在本综述中,我们讨论了无碘化物/碘的氧化还原对作为流体I⁻/I₃⁻氧化还原穿梭体的替代品。我们还回顾了固态HTM在无碘化物/碘的固态DSSC中的应用,重点关注它们在器件中的孔填充和电荷迁移率,以及这些值与所得无碘化物/碘的DSSC性能之间的关系。我们展示了敏化染料分子的结构以及锂盐或咪唑鎓盐添加剂如何影响器件性能。此外,HTM与染料分子进行电子接触的自组装分子相互作用在界面处的单向电荷扩散中起着重要作用。我们通过使用含3-烷基噻吩的钌染料HRS-1和双乙撑二氧噻吩(bis-EDOT)进行光电化学聚合(PEP)得到的基于聚(3,4-乙撑二氧噻吩)(PEDOT)的DSSC,证明了非键合界面接触(如π-π堆积)对于成功引入HTM的重要性。