Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS n degrees 6230, 2 rue de la Houssinière-BP 92208-44322 Nantes cedex 3, France.
Acc Chem Res. 2010 Aug 17;43(8):1063-71. doi: 10.1021/ar900275b.
Because solar energy is the most abundant renewable energy resource, the clear connection between human activity and global warming has strengthened the interest in photovoltaic science. Dye-sensitized solar cells (DSSCs) provide a promising low-cost technology for harnessing this energy source. Until recently, much of the research surrounding DSSCs had been focused on the sensitization of n-type semiconductors, such as titanium dioxide (Gratzel cells). In an n-type dye-sensitized solar cell (n-DSSC), an electron is injected into the conduction band of an n-type semiconductor (n-SC) from the excited state of the sensitizer. Comparatively few studies have examined the sensitization of wide bandgap p-type semiconductors. In a p-type DSSC (p-DSSC), the photoexcited sensitizer is reductively quenched by hole injection into the valence band of a p-type semiconductor (p-SC). The study of p-DSSCs is important both to understand the factors that control the rate of hole photoinjection and to aid the rational design of efficient p-DSSCs. In theory, p-DSSCs should be able to work as efficiently as n-DSSCs. In addition, this research provides a method for preparing tandem DSSCs consisting of a TiO(2)-photosensitized anode and a photosensitized p-type SC as a cathode. Tandem DSSCs are particularly important because they represent low-cost photovoltaic devices whose photoconversion efficiencies could exceed 15%. This Account describes recent research results on p-DSSCs. Because these photoelectrochemical devices are the mirror images of conventional n-DSSCs, they share some structural similarities, but they use different materials and have different charge transfer kinetics. In this technology, nickel oxide is the predominant p-SC material used, but much higher photoconversion efficiencies could be achieved with new p-SCs materials with deeper valence band potential. Currently, iodide/triiodide is the main redox mediator of electron transport within these devices, but we expect that this material could be advantageously replaced with more efficient redox couples. We also discuss valuable information obtained by ultrafast transient absorption spectroscopy, which sheds some light on the factors that govern the efficiency of the cell. Notably, we demonstrate that ultrafast hole injection generally occurs between the sensitizer and the SC, but the resulting charge-separated state (e.g. electron on the sensitizer and hole in the VB) is short-lived and recombines quickly. So far, the only effective strategy for slowing the back recombination reaction relies on a bimolecular system consisting of the sensitizer linked to an electron acceptor, which increases the separation distance between the charges. A photoconversion efficiency of 0.41% under AM 1.5 was recently measured with a p-type DSSC using this strategy.
由于太阳能是最丰富的可再生能源,人类活动与全球变暖之间的明确联系增强了人们对光伏科学的兴趣。染料敏化太阳能电池 (DSSC) 为利用这种能源提供了一种有前途的低成本技术。直到最近,大多数围绕 DSSC 的研究都集中在 n 型半导体(如二氧化钛 (Gratzel 电池))的敏化上。在 n 型染料敏化太阳能电池 (n-DSSC) 中,电子从敏化剂的激发态注入 n 型半导体 (n-SC) 的导带。相对较少的研究检查了宽带隙 p 型半导体的敏化。在 p 型 DSSC (p-DSSC) 中,光激发的敏化剂通过空穴注入 p 型半导体 (p-SC) 的价带而被还原猝灭。p-DSSC 的研究对于理解控制空穴光注入速率的因素以及辅助高效 p-DSSC 的合理设计都很重要。从理论上讲,p-DSSC 应该能够像 n-DSSC 一样高效工作。此外,这项研究为制备由 TiO2 敏化的阳极和敏化的 p 型 SC 作为阴极组成的串联 DSSC 提供了一种方法。串联 DSSC 非常重要,因为它们代表了低成本光伏器件,其光电转换效率可以超过 15%。本账户描述了 p-DSSC 的最新研究成果。由于这些光电化学器件是传统 n-DSSC 的镜像,因此它们具有一些结构相似性,但它们使用不同的材料并且具有不同的电荷转移动力学。在这项技术中,氧化镍是主要的 p-SC 材料,但使用具有更深价带势能的新型 p-SC 材料可以获得更高的光电转换效率。目前,碘化物/三碘化物是这些器件中电子传输的主要氧化还原介质,但我们预计这种材料可以被更有效的氧化还原对取代。我们还讨论了超快瞬态吸收光谱获得的有价值信息,这为我们了解影响电池效率的因素提供了一些线索。值得注意的是,我们证明超快空穴注入通常发生在敏化剂和 SC 之间,但由此产生的电荷分离态(例如敏化剂上的电子和 VB 中的空穴)寿命短且快速重组。到目前为止,减缓反向复合反应的唯一有效策略是依赖于由敏化剂与电子受体连接组成的双分子体系,该体系增加了电荷之间的分离距离。最近,使用这种策略,使用 p 型 DSSC 测量到在 AM 1.5 下 0.41%的光电转换效率。