Suppr超能文献

贝叶斯模型选择用于描述基因组印迹效应和模式。

Bayesian model selection for characterizing genomic imprinting effects and patterns.

机构信息

School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China.

出版信息

Bioinformatics. 2010 Jan 15;26(2):235-41. doi: 10.1093/bioinformatics/btp620. Epub 2009 Oct 30.

Abstract

MOTIVATION

Although imprinted genes have been ubiquitously observed in nature, statistical methodology still has not been systematically developed for jointly characterizing genomic imprinting effects and patterns. To detect imprinting genes influencing quantitative traits, the least square and maximum likelihood approaches for fitting a single quantitative trait loci (QTL) and Bayesian method for simultaneously modeling multiple QTLs have been adopted in various studies.

RESULTS

In a widely used F(2) reciprocal mating population for mapping imprinting genes, we herein propose a genomic imprinting model which describes additive, dominance and imprinting effects of multiple imprinted quantitative trait loci (iQTL) for traits of interest. Depending upon the estimates of the above genetic effects, we categorized imprinting patterns into seven types, which provides a complete classification scheme for describing imprinting patterns. Bayesian model selection was employed to identify iQTL along with many genetic parameters in a computationally efficient manner. To make statistical inference on the imprinting types of iQTL detected, a set of Bayes factors were formulated using the posterior probabilities for the genetic effects being compared. We demonstrated the performance of the proposed method by computer simulation experiments and then applied this method to two real datasets. Our approach can be generally used to identify inheritance modes and determine the contribution of major genes for quantitative variations.

摘要

动机

尽管印迹基因在自然界中被广泛观察到,但统计方法仍然没有系统地发展起来,以联合描述基因组印迹效应和模式。为了检测影响数量性状的印迹基因,在各种研究中已经采用了最小二乘法和最大似然法拟合单个数量性状位点(QTL)和贝叶斯法同时对多个 QTL 进行建模的方法。

结果

在一个广泛使用的用于绘制印迹基因的 F2 回交交配群体中,我们在此提出了一个基因组印迹模型,该模型描述了多个印迹数量性状位点(iQTL)对感兴趣性状的加性、显性和印迹效应。根据上述遗传效应的估计,我们将印迹模式分为七种类型,这为描述印迹模式提供了一个完整的分类方案。贝叶斯模型选择被用于以计算有效的方式识别 iQTL 以及许多遗传参数。为了对检测到的 iQTL 的印迹类型进行统计推断,使用比较遗传效应的后验概率来制定一组贝叶斯因子。我们通过计算机模拟实验演示了所提出方法的性能,然后将该方法应用于两个真实数据集。我们的方法可以一般用于识别遗传模式和确定主要基因对数量变化的贡献。

相似文献

引用本文的文献

本文引用的文献

3
Genomic imprinting effects on adult body composition in mice.基因组印记对小鼠成年期身体组成的影响。
Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4253-8. doi: 10.1073/pnas.0706562105. Epub 2008 Mar 12.
6
7
A genetic mouse model to investigate hyperoxic acute lung injury survival.一种用于研究高氧性急性肺损伤存活率的基因小鼠模型。
Physiol Genomics. 2007 Aug 20;30(3):262-70. doi: 10.1152/physiolgenomics.00232.2006. Epub 2007 May 8.
8
Epigenetics in development.发育中的表观遗传学。
Dev Dyn. 2007 Apr;236(4):1144-56. doi: 10.1002/dvdy.21094.
10
Imprinting mechanisms--it only takes two.印记机制——只需要两个。
Genes Dev. 2006 May 15;20(10):1203-6. doi: 10.1101/gad.1437306.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验