Suppr超能文献

血液系统恶性肿瘤中微阵列数据的综合肿瘤基因组分析

Integrative oncogenomic analysis of microarray data in hematologic malignancies.

作者信息

Martínez-Climent Jose A, Fontan Lorena, Fresquet Vicente, Robles Eloy, Ortiz María, Rubio Angel

机构信息

Division of Oncology, Center for Applied Medical Research, University of Navarra, Pamplona, Spain.

出版信息

Methods Mol Biol. 2010;576:231-77. doi: 10.1007/978-1-59745-545-9_13.

Abstract

During the last decade, gene expression microarrays and array-based comparative genomic hybridization (array-CGH) have unraveled the complexity of human tumor genomes more precisely and comprehensively than ever before. More recently, the simultaneous assessment of global changes in messenger RNA (mRNA) expression and in DNA copy number through "integrative oncogenomic" analyses has allowed researchers the access to results uncovered through the analysis of one-dimensional data sets, thus accelerating cancer gene discovery. In this chapter, we discuss the major contributions of DNA microarrays to the study of hematological malignancies, focusing on the integrative oncogenomic approaches that correlate genomic and transcriptomic data. We also present the basic aspects of these methodologies and their present and future application in clinical oncology.

摘要

在过去十年中,基因表达微阵列和基于阵列的比较基因组杂交(array-CGH)比以往任何时候都更精确、更全面地揭示了人类肿瘤基因组的复杂性。最近,通过“整合肿瘤基因组学”分析同时评估信使核糖核酸(mRNA)表达和DNA拷贝数的全局变化,使研究人员能够获得通过分析一维数据集所发现的结果,从而加速了癌症基因的发现。在本章中,我们将讨论DNA微阵列在血液系统恶性肿瘤研究中的主要贡献,重点关注将基因组和转录组数据相关联的整合肿瘤基因组学方法。我们还将介绍这些方法的基本方面及其在临床肿瘤学中的当前和未来应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验