Suppr超能文献

二维多稳态吸引子神经网络中的非平凡全局吸引子

Nontrivial global attractors in 2-D multistable attractor neural networks.

作者信息

Zou Lan, Tang Huajin, Tan Kay Chen, Zhang Weinian

机构信息

Departmentof Mathematics, Sichuan University, Chengdu 610064, China.

出版信息

IEEE Trans Neural Netw. 2009 Nov;20(11):1842-51. doi: 10.1109/TNN.2009.2032269.

Abstract

Attractor dynamics is a crucial problem for attractor neural networks, as it is the underling computational mechanism for memory storage and retrieval in neural systems. This brief studies a class of attractor network consisting of linearized threshold neurons, and analyzes global attractors based on a parameterized 2-D model. On the basis of previous results on nondegenerate and degenerate equilibria in mathematics, we further elucidate all possible nontrivial global attractors. Our theoretical result provides precise descriptions on how the changes of network parameters affect the attractors' distribution and landscape, and it may give a feasible solution towards specifying attractors by specifying weights. Simulations are presented to illustrate the theoretical results.

摘要

吸引子动力学是吸引子神经网络的一个关键问题,因为它是神经系统中记忆存储和检索的潜在计算机制。本简报研究了一类由线性化阈值神经元组成的吸引子网络,并基于一个参数化二维模型分析了全局吸引子。基于先前在数学中关于非退化和退化平衡点的结果,我们进一步阐明了所有可能的非平凡全局吸引子。我们的理论结果精确描述了网络参数的变化如何影响吸引子的分布和格局,并且可能为通过指定权重来确定吸引子提供一个可行的解决方案。通过仿真来说明理论结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验