Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Acta Biomater. 2010 Apr;6(4):1288-96. doi: 10.1016/j.actbio.2009.10.049. Epub 2009 Nov 1.
The method described in this work, termed GELPOR3D, is characterised by its simplicity of use, low-cost equipment, compositional flexibility, and lack of aggressive or toxic solvents or other thermal treatment. This technique ensures the generation of a three-dimensional network of interconnected pores (300-900 microm); in addition, a random and not necessarily connected porosity is generated, yielding a hierarchical porous architecture from the macro to the molecular scale. The interconnected pores, large enough to ensure an adequate vascularization and new tissue ingrowth, can be obtained by pouring a slurry containing a biodegradable thermogel (such as agarose and gellan) and a ceramic into a mold consisting of a three-dimensional network of rigid filaments. Additional pore distributions in the macropore region can be tailored as a function of the drying/preservation technology (10-100 microm) or the interaction between the inorganic particles coated by the polymeric components (0.1-1 microm). Moreover, porosity in the mesopore range can be created by shaping ceramics such as mesoporous silica or nanocrystalline carbonatehydroxyapatite. In addition to the various bioceramics that have been successfully shaped, this method is flexible enough to allow the introduction of certain substances whose controlled release may help to avoid some negative effects that usually appear with the implantation of a material, i.e. infection, inflammation, etc., or to simplify some of the many steps required for the successful integration of a graft.
本文所描述的方法称为 GELPOR3D,其特点是使用简便、设备成本低、组成灵活,且不使用腐蚀性或有毒溶剂或其他热处理方法。该技术可确保生成具有相互连通的孔(300-900μm)的三维网络;此外,还会生成随机且不一定连通的多孔结构,从而在宏观到分子尺度上产生分级多孔结构。通过将包含可生物降解热凝胶(如琼脂糖和凝胶多糖)和陶瓷的浆料浇铸到由刚性细丝组成的三维网络模具中,可以获得足够大的连通孔,以确保适当的血管化和新组织长入。可以根据干燥/保存技术(10-100μm)或涂覆有聚合物成分的无机颗粒之间的相互作用(0.1-1μm)来定制大孔区域中的其他孔分布。此外,还可以通过成型介孔陶瓷(如介孔二氧化硅或纳米晶碳酸羟基磷灰石)来产生中孔范围内的孔隙。除了已经成功成型的各种生物陶瓷外,该方法还具有足够的灵活性,可以引入某些物质,其控制释放可能有助于避免通常在植入材料时出现的一些负面影响,例如感染、炎症等,或者简化移植物成功整合所需的许多步骤中的某些步骤。