Suppr超能文献

使用 micro-CT 对肺部疾病的小鼠模型进行气道分割和分析。

Airway segmentation and analysis for the study of mouse models of lung disease using micro-CT.

机构信息

Cancer Imaging Laboratory, Center for Applied Medical Research, 31008 Pamplona, Spain.

出版信息

Phys Med Biol. 2009 Nov 21;54(22):7009-24. doi: 10.1088/0031-9155/54/22/017. Epub 2009 Nov 4.

Abstract

Animal models of lung disease are gaining importance in understanding the underlying mechanisms of diseases such as emphysema and lung cancer. Micro-CT allows in vivo imaging of these models, thus permitting the study of the progression of the disease or the effect of therapeutic drugs in longitudinal studies. Automated analysis of micro-CT images can be helpful to understand the physiology of diseased lungs, especially when combined with measurements of respiratory system input impedance. In this work, we present a fast and robust murine airway segmentation and reconstruction algorithm. The algorithm is based on a propagating fast marching wavefront that, as it grows, divides the tree into segments. We devised a number of specific rules to guarantee that the front propagates only inside the airways and to avoid leaking into the parenchyma. The algorithm was tested on normal mice, a mouse model of chronic inflammation and a mouse model of emphysema. A comparison with manual segmentations of two independent observers shows that the specificity and sensitivity values of our method are comparable to the inter-observer variability, and radius measurements of the mainstem bronchi reveal significant differences between healthy and diseased mice. Combining measurements of the automatically segmented airways with the parameters of the constant phase model provides extra information on how disease affects lung function.

摘要

在理解肺气肿和肺癌等疾病的潜在机制方面,动物肺部疾病模型的重要性日益凸显。微计算机断层扫描(micro-CT)可对这些模型进行体内成像,从而可以在纵向研究中研究疾病的进展或治疗药物的效果。对 micro-CT 图像的自动分析有助于了解患病肺部的生理学,尤其是与呼吸系统输入阻抗的测量相结合时。在这项工作中,我们提出了一种快速而稳健的鼠气道分割和重建算法。该算法基于传播的快速行进波阵面,随着波阵面的增长,将树状结构分割成多个段。我们设计了许多特定的规则来保证波阵面仅在气道内传播,避免渗漏到肺实质中。该算法已在正常小鼠、慢性炎症小鼠模型和肺气肿小鼠模型上进行了测试。与两位独立观察者的手动分割进行比较的结果表明,我们的方法的特异性和灵敏度值与观察者间的变异性相当,并且主支气管的半径测量值显示出健康和患病小鼠之间的显著差异。将自动分割的气道测量值与恒相位模型的参数相结合,可以提供有关疾病如何影响肺功能的更多信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验