Suppr超能文献

基于稀疏域主动模型的 X 射线计算机断层扫描三维肺肿瘤分割。

Three-dimensional lung tumor segmentation from x-ray computed tomography using sparse field active models.

机构信息

Robarts Research Institute, London, Ontario, Canada.

出版信息

Med Phys. 2012 Feb;39(2):851-65. doi: 10.1118/1.3676687.

Abstract

PURPOSE

Manual segmentation of lung tumors is observer dependent and time-consuming but an important component of radiology and radiation oncology workflow. The objective of this study was to generate an automated lung tumor measurement tool for segmentation of pulmonary metastatic tumors from x-ray computed tomography (CT) images to improve reproducibility and decrease the time required to segment tumor boundaries.

METHODS

The authors developed an automated lung tumor segmentation algorithm for volumetric image analysis of chest CT images using shape constrained Otsu multithresholding (SCOMT) and sparse field active surface (SFAS) algorithms. The observer was required to select the tumor center and the SCOMT algorithm subsequently created an initial surface that was deformed using level set SFAS to minimize the total energy consisting of mean separation, edge, partial volume, rolling, distribution, background, shape, volume, smoothness, and curvature energies.

RESULTS

The proposed segmentation algorithm was compared to manual segmentation whereby 21 tumors were evaluated using one-dimensional (1D) response evaluation criteria in solid tumors (RECIST), two-dimensional (2D) World Health Organization (WHO), and 3D volume measurements. Linear regression goodness-of-fit measures (r(2) = 0.63, p < 0.0001; r(2) = 0.87, p < 0.0001; and r(2) = 0.96, p < 0.0001), and Pearson correlation coefficients (r = 0.79, p < 0.0001; r = 0.93, p < 0.0001; and r = 0.98, p < 0.0001) for 1D, 2D, and 3D measurements, respectively, showed significant correlations between manual and algorithm results. Intra-observer intraclass correlation coefficients (ICC) demonstrated high reproducibility for algorithm (0.989-0.995, 0.996-0.997, and 0.999-0.999) and manual measurements (0.975-0.993, 0.985-0.993, and 0.980-0.992) for 1D, 2D, and 3D measurements, respectively. The intra-observer coefficient of variation (CV%) was low for algorithm (3.09%-4.67%, 4.85%-5.84%, and 5.65%-5.88%) and manual observers (4.20%-6.61%, 8.14%-9.57%, and 14.57%-21.61%) for 1D, 2D, and 3D measurements, respectively.

CONCLUSIONS

The authors developed an automated segmentation algorithm requiring only that the operator select the tumor to measure pulmonary metastatic tumors in 1D, 2D, and 3D. Algorithm and manual measurements were significantly correlated. Since the algorithm segmentation involves selection of a single seed point, it resulted in reduced intra-observer variability and decreased time, for making the measurements.

摘要

目的

手动分割肺部肿瘤依赖于观察者,且耗时,但它是放射学和放射肿瘤学工作流程的重要组成部分。本研究的目的是开发一种自动的肺部肿瘤测量工具,用于从 X 射线计算机断层扫描(CT)图像中分割肺部转移性肿瘤,以提高可重复性并减少分割肿瘤边界所需的时间。

方法

作者开发了一种用于胸部 CT 图像容积图像分析的自动肺肿瘤分割算法,使用形状受限的 Otsu 多阈值(SCOMT)和稀疏场主动表面(SFAS)算法。要求观察者选择肿瘤中心,然后 SCOMT 算法创建一个初始表面,该表面使用水平集 SFAS 进行变形,以最小化由平均分离、边缘、部分体积、滚动、分布、背景、形状、体积、平滑度和曲率能量组成的总能量。

结果

将提出的分割算法与手动分割进行了比较,其中使用一维(1D)实体瘤反应评估标准(RECIST)、二维(2D)世界卫生组织(WHO)和 3D 体积测量对 21 个肿瘤进行了评估。线性回归拟合优度度量(r²=0.63,p<0.0001;r²=0.87,p<0.0001;r²=0.96,p<0.0001)和 Pearson 相关系数(r=0.79,p<0.0001;r=0.93,p<0.0001;r=0.98,p<0.0001)分别用于 1D、2D 和 3D 测量,表明手动和算法结果之间存在显著相关性。观察者内组内相关系数(ICC)显示算法(0.989-0.995、0.996-0.997 和 0.999-0.999)和手动测量(0.975-0.993、0.985-0.993 和 0.980-0.992)的高度重复性,分别用于 1D、2D 和 3D 测量。算法的观察者内变异系数(CV%)较低(3.09%-4.67%、4.85%-5.84%和 5.65%-5.88%),手动观察者的变异系数(4.20%-6.61%、8.14%-9.57%和 14.57%-21.61%),分别用于 1D、2D 和 3D 测量。

结论

作者开发了一种自动分割算法,仅要求操作员选择要测量的肿瘤,即可在 1D、2D 和 3D 中测量肺部转移性肿瘤。算法和手动测量结果具有显著相关性。由于算法分割仅涉及选择单个种子点,因此它减少了观察者内的变异性并减少了测量所需的时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验