Suppr超能文献

贝叶斯方法在海洋声学中的模态分解。

A Bayesian approach to modal decomposition in ocean acoustics.

出版信息

J Acoust Soc Am. 2009 Nov;126(5):EL147-52. doi: 10.1121/1.3244037.

Abstract

A Bayesian approach is developed for modal decomposition from time-frequency representations of broadband acoustic signals propagating in underwater media. The goal is to obtain accurate estimates and posterior probability distributions of modal frequencies arriving at a specific time and their corresponding amplitudes, which can be employed for geoacoustic inversion. The proposed approach, optimized via Gibbs sampling, provides uncertainty information on modal characteristics via the posterior distributions, typically unavailable from traditional methods.

摘要

针对水下宽带声场时频表示的模态分解问题,提出了一种贝叶斯方法。该方法的目的是获取特定时刻到达的模态频率及其对应幅度的精确估计和后验概率分布,可用于声传播反演。通过吉布斯抽样优化的该方法通过后验分布提供了模态特征的不确定性信息,这是传统方法通常无法提供的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验