Suppr超能文献

单眼透明运动感知中的神经机制模型。

A model of neural mechanisms in monocular transparent motion perception.

作者信息

Raudies Florian, Neumann Heiko

机构信息

Institute of Neural Information Processing, University of Ulm, Germany.

出版信息

J Physiol Paris. 2010 Jan-Mar;104(1-2):71-83. doi: 10.1016/j.jphysparis.2009.11.010. Epub 2009 Nov 10.

Abstract

Transparent motion is perceived when multiple motions are presented in the same part of visual space that move in different directions or with different speeds. Several psychophysical as well as physiological experiments have studied the conditions under which motion transparency occurs. Few computational mechanisms have been proposed that allow to segregate multiple motions. We present a novel neural model which investigates the necessary mechanisms underlying initial motion detection, the required representations for velocity coding, and the integration and segregation of motion stimuli to account for the perception of transparent motion. The model extends a previously developed architecture for neural computations along the dorsal pathway, particularly, in cortical areas V1, MT, and MSTd. It emphasizes the role of feedforward cascade processing and feedback from higher to earlier processing stages for selective feature enhancement and tuning. Our results demonstrate that the model reproduces several key psychophysical findings in perceptual motion transparency using random dot stimuli. Moreover, the model is able to process transparent motion as well as opaque surface motion in real-world sequences of 3-d scenes. As a main thesis, we argue that the perception of transparent motion relies on the representation of multiple velocities at one spatial location; however, this feature is necessary but not sufficient to perceive transparency. It is suggested that the activations simultaneously representing multiple activities are subsequently integrated by separate mechanisms leading to the segregation of different overlapping segments.

摘要

当在视觉空间的同一部分呈现多个沿不同方向或不同速度移动的运动时,就会感知到透明运动。一些心理物理学和生理学实验研究了运动透明度出现的条件。很少有计算机制被提出来用于分离多个运动。我们提出了一种新颖的神经模型,该模型研究了初始运动检测背后的必要机制、速度编码所需的表示,以及运动刺激的整合和分离,以解释透明运动的感知。该模型扩展了先前开发的沿背侧通路进行神经计算的架构,特别是在皮层区域V1、MT和MSTd中。它强调前馈级联处理以及从更高处理阶段到更早处理阶段的反馈在选择性特征增强和调整中的作用。我们的结果表明,该模型使用随机点刺激在感知运动透明度方面再现了几个关键的心理物理学发现。此外,该模型能够处理真实世界3D场景序列中的透明运动以及不透明表面运动。作为一个主要论点,我们认为透明运动的感知依赖于在一个空间位置上对多个速度的表示;然而,这一特征对于感知透明度是必要的但不是充分的。有人认为,同时表示多种活动的激活随后由单独的机制进行整合,从而导致不同重叠部分的分离。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验