Radon Institute for Computational and Applied Mathematics, 4040 Linz, Austria.
IEEE Trans Med Imaging. 2010 Feb;29(2):442-54. doi: 10.1109/TMI.2009.2033991. Epub 2009 Nov 6.
We present a nonparametric regression method for denoising 3-D image sequences acquired via fluorescence microscopy. The proposed method exploits the redundancy of the 3-D+time information to improve the signal-to-noise ratio of images corrupted by Poisson-Gaussian noise. A variance stabilization transform is first applied to the image-data to remove the dependence between the mean and variance of intensity values. This preprocessing requires the knowledge of parameters related to the acquisition system, also estimated in our approach. In a second step, we propose an original statistical patch-based framework for noise reduction and preservation of space-time discontinuities. In our study, discontinuities are related to small moving spots with high velocity observed in fluorescence video-microscopy. The idea is to minimize an objective nonlocal energy functional involving spatio-temporal image patches. The minimizer has a simple form and is defined as the weighted average of input data taken in spatially-varying neighborhoods. The size of each neighborhood is optimized to improve the performance of the pointwise estimator. The performance of the algorithm (which requires no motion estimation) is then evaluated on both synthetic and real image sequences using qualitative and quantitative criteria.
我们提出了一种用于荧光显微镜获取的 3D 图像序列去噪的非参数回归方法。所提出的方法利用 3D+时间信息的冗余性来提高被泊松-高斯噪声污染的图像的信噪比。首先对图像数据应用方差稳定变换来去除强度值的均值和方差之间的依赖性。此预处理需要与采集系统相关的参数的知识,我们的方法也对其进行了估计。在第二步中,我们提出了一种原始的基于统计块的框架,用于降噪和保持时空不连续性。在我们的研究中,不连续性与荧光视频显微镜中观察到的具有高速度的小移动斑点有关。其思想是最小化一个涉及时空图像块的非局部能量泛函。最小化器具有简单的形式,被定义为在空间变化的邻域中输入数据的加权平均值。每个邻域的大小进行优化以提高点估计器的性能。然后使用定性和定量标准,在合成和真实图像序列上评估算法的性能(该算法不需要运动估计)。