Biomedical Imaging Group (BIG), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
IEEE Trans Image Process. 2011 Mar;20(3):696-708. doi: 10.1109/TIP.2010.2073477. Epub 2010 Sep 13.
We propose a general methodology (PURE-LET) to design and optimize a wide class of transform-domain thresholding algorithms for denoising images corrupted by mixed Poisson-Gaussian noise. We express the denoising process as a linear expansion of thresholds (LET) that we optimize by relying on a purely data-adaptive unbiased estimate of the mean-squared error (MSE), derived in a non-Bayesian framework (PURE: Poisson-Gaussian unbiased risk estimate). We provide a practical approximation of this theoretical MSE estimate for the tractable optimization of arbitrary transform-domain thresholding. We then propose a pointwise estimator for undecimated filterbank transforms, which consists of subband-adaptive thresholding functions with signal-dependent thresholds that are globally optimized in the image domain. We finally demonstrate the potential of the proposed approach through extensive comparisons with state-of-the-art techniques that are specifically tailored to the estimation of Poisson intensities. We also present denoising results obtained on real images of low-count fluorescence microscopy.
我们提出了一种通用的方法(PURE-LET),用于设计和优化广泛类别的变换域阈值算法,以对混合泊松-高斯噪声污染的图像进行去噪。我们将去噪过程表示为阈值的线性展开(LET),通过依赖于在非贝叶斯框架(PURE:泊松-高斯无偏风险估计)中得出的、完全数据自适应的均方误差(MSE)的无偏估计来对其进行优化。我们针对任意变换域阈值的可处理优化提供了这种理论 MSE 估计的实用逼近。然后,我们为非下采样滤波器组变换提出了一种逐点估计器,它由子带自适应阈值函数组成,具有信号相关的全局优化在图像域中的阈值。最后,我们通过与专门针对泊松强度估计的最先进技术的广泛比较,展示了所提出方法的潜力。我们还展示了在低计数荧光显微镜的真实图像上获得的去噪结果。