Suppr超能文献

一种针对具有加性目标函数的逆优化问题的分析方法:在人类抓握中的应用。

An analytical approach to the problem of inverse optimization with additive objective functions: an application to human prehension.

作者信息

Terekhov Alexander V, Pesin Yakov B, Niu Xun, Latash Mark L, Zatsiorsky Vladimir M

机构信息

Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

J Math Biol. 2010 Sep;61(3):423-53. doi: 10.1007/s00285-009-0306-3. Epub 2009 Nov 10.

Abstract

We consider the problem of what is being optimized in human actions with respect to various aspects of human movements and different motor tasks. From the mathematical point of view this problem consists of finding an unknown objective function given the values at which it reaches its minimum. This problem is called the inverse optimization problem. Until now the main approach to this problems has been the cut-and-try method, which consists of introducing an objective function and checking how it reflects the experimental data. Using this approach, different objective functions have been proposed for the same motor action. In the current paper we focus on inverse optimization problems with additive objective functions and linear constraints. Such problems are typical in human movement science. The problem of muscle (or finger) force sharing is an example. For such problems we obtain sufficient conditions for uniqueness and propose a method for determining the objective functions. To illustrate our method we analyze the problem of force sharing among the fingers in a grasping task. We estimate the objective function from the experimental data and show that it can predict the force-sharing pattern for a vast range of external forces and torques applied to the grasped object. The resulting objective function is quadratic with essentially non-zero linear terms.

摘要

我们考虑关于人类动作的各个方面以及不同运动任务,人类动作中正在被优化的是什么这一问题。从数学角度来看,这个问题在于给定未知目标函数达到其最小值时的值,去找出该目标函数。这个问题被称为逆优化问题。到目前为止,解决这个问题的主要方法是试错法,该方法包括引入一个目标函数并检查它如何反映实验数据。使用这种方法,针对相同的运动动作提出了不同的目标函数。在当前论文中,我们专注于具有加性目标函数和线性约束的逆优化问题。此类问题在人类运动科学中很典型。肌肉(或手指)力分配问题就是一个例子。对于此类问题,我们获得了唯一性的充分条件,并提出了一种确定目标函数的方法。为了说明我们的方法,我们分析了抓握任务中手指间的力分配问题。我们从实验数据中估计目标函数,并表明它可以预测施加到被抓握物体上的大范围外力和扭矩下的力分配模式。所得的目标函数是二次的,且具有本质上非零的线性项。

相似文献

4
Prehension synergies during smooth changes of the external torque.在外部扭矩平稳变化期间的抓握协同作用。
Exp Brain Res. 2011 Sep;213(4):493-506. doi: 10.1007/s00221-011-2799-4. Epub 2011 Jul 28.
10

引用本文的文献

4
Biomechanics as a window into the neural control of movement.生物力学作为洞察运动神经控制的一扇窗口。
J Hum Kinet. 2016 Sep 10;52:7-20. doi: 10.1515/hukin-2015-0190. eCollection 2016 Sep 1.
6
Towards physics of neural processes and behavior.迈向神经过程与行为的物理学
Neurosci Biobehav Rev. 2016 Oct;69:136-46. doi: 10.1016/j.neubiorev.2016.08.005. Epub 2016 Aug 4.
7
Analytical Inverse Optimization in Two-Hand Prehensile Tasks.双手抓握任务中的解析逆优化
J Mot Behav. 2016 Sep-Oct;48(5):424-34. doi: 10.1080/00222895.2015.1123140. Epub 2016 Jun 2.
8
Force-stabilizing synergies in motor tasks involving two actors.涉及两个参与者的运动任务中的力稳定协同作用。
Exp Brain Res. 2015 Oct;233(10):2935-49. doi: 10.1007/s00221-015-4364-z. Epub 2015 Jun 24.
9
The Hand: Shall We Ever Understand How it Works?手:我们究竟能否理解它是如何工作的?
Motor Control. 2015 Apr;19(2):108-26. doi: 10.1123/mc.2014-0025. Epub 2014 Jul 16.

本文引用的文献

1
Multifinger prehension: an overview.多指抓握:概述
J Mot Behav. 2008 Sep;40(5):446-76. doi: 10.3200/JMBR.40.5.446-476.
6
Model-based estimation of muscle forces exerted during movements.基于模型的运动过程中肌肉力量估计
Clin Biomech (Bristol). 2007 Feb;22(2):131-54. doi: 10.1016/j.clinbiomech.2006.09.005. Epub 2006 Oct 27.
7
Synthesis of standing-up trajectories using dynamic optimization.基于动态优化的起立轨迹合成
Gait Posture. 2005 Jan;21(1):1-11. doi: 10.1016/j.gaitpost.2003.11.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验