Latash Mark L, Zatsiorsky Vladimir M
Department of Kinesiology, Rec Hall 267, The Pennsylvania State University, University Park, PA 16802, USA.
Adv Exp Med Biol. 2009;629:597-618. doi: 10.1007/978-0-387-77064-2_32.
The human hand has been a fascinating object of study for researchers in both biomechanics and motor control. Studies of human prehension have contributed significantly to the progress in addressing the famous problem of motor redundancy. After a brief review of the hand mechanics, we present results of recent studies that support a general view that the apparently redundant design of the hand is not a source of computational problems but a rich apparatus that allows performing a variety of tasks in a reliable and flexible way (the principle of abundance). Multi-digit synergies have been analyzed at two levels of a hypothetical hierarchy involved in the control of prehensile actions. At the upper level, forces and moments produced by the thumb and virtual finger (an imagined finger with a mechanical action equal to the combined mechanical action of all four fingers of the hand) co-vary to stabilize the gripping action and the orientation of the hand-held object. These results support the principle of superposition suggested earlier in robotics with respect to the control of artificial grippers. At the lower level of the hierarchy, forces and moments produced by individual fingers co-vary to stabilize the magnitude and direction of the force vector and the moment of force produced by the virtual finger. Adjustments to changes in task constraints (such as, for example, friction under individual digits) may be local and synergic. The latter reflect multi-digit prehension synergies and may be analyzed with the so-called chain effects: Sequences of relatively straightforward cause-effect links directly related to mechanical constraints leading to non-trivial strong co-variation between pairs of elemental variables. Analysis of grip force adjustments during motion of hand-held objects suggests that the central nervous system adjusts to gravitational and inertial loads differently. The human hand is a gold mine for researchers interested in the control of natural human movements.
人类的手一直是生物力学和运动控制领域研究人员着迷的研究对象。对人类抓握的研究为解决著名的运动冗余问题取得的进展做出了重大贡献。在对手部力学进行简要回顾之后,我们展示了近期研究的结果,这些结果支持了一种普遍观点,即手部看似冗余的设计并非计算问题的根源,而是一种丰富的工具,能够以可靠且灵活的方式执行各种任务(丰富性原则)。在控制抓握动作所涉及的假设层次结构的两个层面上分析了多手指协同作用。在较高层面,拇指和虚拟手指(一个想象中的手指,其机械作用等同于手部所有四根手指的联合机械作用)产生的力和力矩共同变化,以稳定抓握动作和手持物体的方向。这些结果支持了机器人技术中早期提出的关于人工夹具控制的叠加原理。在层次结构的较低层面,单个手指产生的力和力矩共同变化,以稳定虚拟手指产生的力矢量的大小和方向以及力矩。对任务约束变化(例如,单个手指下方的摩擦力)的调整可能是局部的且具有协同性。后者反映了多手指抓握协同作用,并且可以用所谓的链式效应进行分析:一系列相对直接的因果联系,直接与机械约束相关,导致成对的基本变量之间出现非平凡的强共同变化。对手持物体运动过程中握力调整的分析表明,中枢神经系统对重力和惯性负载的调整方式不同。对于对自然人类运动控制感兴趣的研究人员来说,人类的手是一座金矿。