Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA.
J Phys Chem B. 2009 Dec 3;113(48):15886-94. doi: 10.1021/jp907009r.
It is shown that the folding of a C(alpha) model of chymotyprsin inhibitor (CI2) protein cannot be described by either diffusion (Smoluchowski equation, SE) or a normal-diffusion continuous time random walk of a single order parameter under the influence of the thermodynamic force. The reason for these failures is that the order parameter follows subdiffusion. A theory is proposed based on the idea that an ordinary SE holds along a contour representative of the folding pathways, and that displacements along the contour obey a fractal relationship to, and are longer than, those along the reaction coordinate defined by the order parameter. With a new, constraint-free method to determine the order-parameter-dependent diffusion constant, and statistical temperature molecular dynamics (STMD) enhanced sampling of the free energy, the fractal SE theory is completely characterized by short-time simulations, and its predictions are in quantitative agreement with simulated long-time folding dynamics. Thus, the fractal SE may serve as an accelerated algorithm to study the folding of proteins too slow to be simulated directly.
研究表明,糜蛋白酶抑制剂(CI2)蛋白的 C(alpha)模型的折叠不能用扩散(Smoluchowski 方程,SE)或在热力学力影响下单个顺序参数的正常扩散连续时间随机漫步来描述。这些失败的原因是顺序参数遵循亚扩散。提出了一种理论,该理论基于这样一种思想,即普通 SE 沿着代表折叠途径的轮廓保持,并且沿着轮廓的位移与沿由顺序参数定义的反应坐标的位移遵循分形关系,并且比沿反应坐标的位移更长。通过一种新的、无约束的方法来确定与顺序参数相关的扩散常数,并通过统计温度分子动力学(STMD)增强自由能采样,分形 SE 理论可以通过短时间模拟完全描述,并且其预测与模拟的长时间折叠动力学定量一致。因此,分形 SE 可以作为一种加速算法,用于研究那些太慢而无法直接模拟的蛋白质的折叠。