Suppr超能文献

基于酶的具有模块化设计的 NAND 和 NOR 逻辑门。

Enzyme-based NAND and NOR logic gates with modular design.

机构信息

Department of Chemistry and Biomolecular Science, and NanoBio Laboratory (NABLAB), Clarkson University, Potsdam New York 13699-5810, USA.

出版信息

J Phys Chem B. 2009 Dec 10;113(49):16065-70. doi: 10.1021/jp9079052.

Abstract

The logic gates NAND/NOR were mimicked by enzyme biocatalyzed reactions activated by sucrose, maltose and phosphate. The subunits performing AND/OR Boolean logic operations were designed using maltose phosphorylase and cooperative work of invertase/amyloglucosidase, respectively. Glucose produced as the output signal from the AND/OR subunits was applied as the input signal for the INVERTER gate composed of alcohol dehydrogenase, glucose oxidase, microperoxidase-11, ethanol and NAD(+), which generated the final output in the form of NADH inverting the logic signal from 0 to 1 or from 1 to 0. The final output signal was amplified by a self-promoting biocatalytic system. In order to fulfill the Boolean properties of associativity and commutativity in logic networks, the final NADH output signal was converted to the initial signals of maltose and phosphate, thus allowing assembling of the same standard units in concatenated sequences. The designed modular approach, signal amplification and conversion processes open the way toward complex logic networks composed of standard elements resembling electronic integrated circuitries.

摘要

酶催化反应受蔗糖、麦芽糖和磷酸盐激活,模拟出了与非门/NOR 门。分别使用麦芽糖磷酸化酶和蔗糖酶/异麦芽糖酶的协同作用,设计出执行与门/或门布尔逻辑运算的亚基。从与门/或门亚基产生的葡萄糖作为输出信号被应用于由醇脱氢酶、葡萄糖氧化酶、微过氧化物酶-11、乙醇和 NAD(+)组成的反相器门,以 NADH 的形式生成最终输出,从而将逻辑信号从 0 反转到 1 或从 1 反转到 0。最终输出信号通过自促进生物催化系统进行放大。为了在逻辑网络中实现结合律和交换律的布尔属性,最终的 NADH 输出信号被转换为麦芽糖和磷酸盐的初始信号,从而允许在级联序列中组装相同的标准单元。这种设计的模块化方法、信号放大和转换过程为构建由类似于电子集成电路的标准元件组成的复杂逻辑网络开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验