Suchecki Krzysztof, Hołyst Janusz A
Faculty of Physics, Center of Excellence for Complex Systems Research, Warsaw University of Technology, Koszykowa 75, PL-00-662 Warsaw, Poland.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031110. doi: 10.1103/PhysRevE.80.031110. Epub 2009 Sep 9.
In this paper, we investigate the behavior of the Ising model on two sparsely connected complex networks. The networks have the topology of a random graph or Barabási and Albert scale-free networks. We extend our previous analysis and show that a bistable-monostable phase transition occurs in such systems. During this transition, the magnetization undergoes a discontinuous jump. We calculate the critical temperature analytically for regular random graphs and study a more general case using an iterative map corresponding to mean-field dynamics. The calculations are confirmed by numeric simulations based on Monte Carlo approach.
在本文中,我们研究了伊辛模型在两个稀疏连接的复杂网络上的行为。这些网络具有随机图或巴拉巴西和阿尔伯特无标度网络的拓扑结构。我们扩展了之前的分析,并表明在这样的系统中会发生双稳态-单稳态相变。在这个转变过程中,磁化强度会经历一个不连续的跳跃。我们解析计算了规则随机图的临界温度,并使用对应于平均场动力学的迭代映射研究了更一般的情况。基于蒙特卡罗方法的数值模拟证实了这些计算结果。