Loverdo C, Bénichou O, Moreau M, Voituriez R
Laboratoire de Physique Théorique de la Matière Condensée, UMR CNRS 7600, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031146. doi: 10.1103/PhysRevE.80.031146. Epub 2009 Sep 30.
Search problems at various scales involve a searcher, be it a molecule before reaction or a foraging animal, which performs an intermittent motion. Here we analyze a generic model based on such type of intermittent motion, in which the searcher alternates phases of slow motion allowing detection and phases of fast motion without detection. We present full and systematic results for different modeling hypotheses of the detection mechanism in space in one, two, and three dimensions. Our study completes and extends the results of our recent letter [Loverdo, Nat. Phys. 4, 134 (2008)] and gives the necessary calculation details. In addition, another modeling of the detection case is presented. We show that the mean target detection time can be minimized as a function of the mean duration of each phase in one, two, and three dimensions. Importantly, this optimal strategy does not depend on the details of the modeling of the slow detection phase, which shows the robustness of our results. We believe that this systematic analysis can be used as a basis to study quantitatively various real search problems involving intermittent behaviors.
各种尺度下的搜索问题都涉及一个搜索者,它可以是反应前的分子,也可以是觅食的动物,搜索者进行的是间歇性运动。在此,我们基于这种间歇性运动分析一个通用模型,其中搜索者在允许探测的慢动作阶段和无探测的快动作阶段之间交替。我们给出了在一维、二维和三维空间中探测机制的不同建模假设下完整且系统的结果。我们的研究完善并扩展了我们近期论文[洛弗多,《自然·物理学》4,134(2008)]的结果,并给出了必要的计算细节。此外,还给出了探测情况的另一种建模。我们表明,在一维、二维和三维空间中,平均目标探测时间可以作为每个阶段平均持续时间的函数而最小化。重要的是,这种最优策略不依赖于慢探测阶段建模的细节,这表明了我们结果的稳健性。我们相信,这种系统分析可作为定量研究各种涉及间歇性行为的实际搜索问题的基础。