Suppr超能文献

网络中信息量最大的成对相互作用。

Maximally informative pairwise interactions in networks.

作者信息

Fitzgerald Jeffrey D, Sharpee Tatyana O

机构信息

Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031914. doi: 10.1103/PhysRevE.80.031914. Epub 2009 Sep 23.

Abstract

Several types of biological networks have recently been shown to be accurately described by a maximum entropy model with pairwise interactions, also known as the Ising model. Here we present an approach for finding the optimal mappings between input signals and network states that allow the network to convey the maximal information about input signals drawn from a given distribution. This mapping also produces a set of linear equations for calculating the optimal Ising-model coupling constants, as well as geometric properties that indicate the applicability of the pairwise Ising model. We show that the optimal pairwise interactions are on average zero for Gaussian and uniformly distributed inputs, whereas they are nonzero for inputs approximating those in natural environments. These nonzero network interactions are predicted to increase in strength as the noise in the response functions of each network node increases. This approach also suggests ways for how interactions with unmeasured parts of the network can be inferred from the parameters of response functions for the measured network nodes.

摘要

最近有研究表明,几种类型的生物网络可以用具有成对相互作用的最大熵模型准确描述,该模型也被称为伊辛模型。在此,我们提出一种方法,用于找到输入信号与网络状态之间的最优映射,使网络能够传达来自给定分布的输入信号的最大信息。这种映射还会产生一组线性方程,用于计算最优伊辛模型耦合常数,以及表明成对伊辛模型适用性的几何特性。我们发现,对于高斯分布和均匀分布的输入,最优成对相互作用平均为零,而对于近似自然环境中的输入,它们不为零。预计随着每个网络节点响应函数中的噪声增加,这些非零网络相互作用的强度会增强。该方法还提出了如何从测量网络节点的响应函数参数推断与网络未测量部分相互作用的方法。

相似文献

1
Maximally informative pairwise interactions in networks.网络中信息量最大的成对相互作用。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031914. doi: 10.1103/PhysRevE.80.031914. Epub 2009 Sep 23.
3
Optimal population coding by noisy spiking neurons.噪声神经元的最优群体编码。
Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14419-24. doi: 10.1073/pnas.1004906107. Epub 2010 Jul 26.
5
Searching for collective behavior in a large network of sensory neurons.在大型感觉神经元网络中寻找集体行为。
PLoS Comput Biol. 2014 Jan;10(1):e1003408. doi: 10.1371/journal.pcbi.1003408. Epub 2014 Jan 2.
6
Searching for collective behavior in a small brain.在小脑中寻找集体行为。
Phys Rev E. 2019 May;99(5-1):052418. doi: 10.1103/PhysRevE.99.052418.
10
Third-order entropy for spatiotemporal neural network characterization.用于时空神经网络表征的三阶熵
J Neurophysiol. 2025 Apr 1;133(4):1234-1244. doi: 10.1152/jn.00108.2024. Epub 2025 Mar 17.

引用本文的文献

2
Optimizing Neural Information Capacity through Discretization.通过离散化优化神经信息容量
Neuron. 2017 Jun 7;94(5):954-960. doi: 10.1016/j.neuron.2017.04.044.
3
Toward functional classification of neuronal types.迈向神经元类型的功能分类。
Neuron. 2014 Sep 17;83(6):1329-34. doi: 10.1016/j.neuron.2014.08.040.
4
Information theory of adaptation in neurons, behavior, and mood.神经元、行为和情绪的适应信息理论。
Curr Opin Neurobiol. 2014 Apr;25:47-53. doi: 10.1016/j.conb.2013.11.007. Epub 2013 Dec 14.
5
Dynamics and processing in finite self-similar networks.有限自相似网络中的动力学与处理。
J R Soc Interface. 2012 Sep 7;9(74):2131-44. doi: 10.1098/rsif.2011.0840. Epub 2012 Feb 29.
6
Minimal models of multidimensional computations.多维计算的最小模型。
PLoS Comput Biol. 2011 Mar;7(3):e1001111. doi: 10.1371/journal.pcbi.1001111. Epub 2011 Mar 24.
7
Optimal population coding by noisy spiking neurons.噪声神经元的最优群体编码。
Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14419-24. doi: 10.1073/pnas.1004906107. Epub 2010 Jul 26.

本文引用的文献

1
Mutual information between input and output trajectories of biochemical networks.生化网络输入与输出轨迹之间的互信息。
Phys Rev Lett. 2009 May 29;102(21):218101. doi: 10.1103/PhysRevLett.102.218101. Epub 2009 May 27.
2
Gene-gene cooperativity in small networks.小网络中的基因-基因协同作用。
Biophys J. 2009 Jun 3;96(11):4525-41. doi: 10.1016/j.bpj.2009.03.005.
4
Information capacity of genetic regulatory elements.遗传调控元件的信息容量。
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 1):011910. doi: 10.1103/PhysRevE.78.011910. Epub 2008 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验