Suppr超能文献

网络中信息量最大的成对相互作用。

Maximally informative pairwise interactions in networks.

作者信息

Fitzgerald Jeffrey D, Sharpee Tatyana O

机构信息

Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031914. doi: 10.1103/PhysRevE.80.031914. Epub 2009 Sep 23.

Abstract

Several types of biological networks have recently been shown to be accurately described by a maximum entropy model with pairwise interactions, also known as the Ising model. Here we present an approach for finding the optimal mappings between input signals and network states that allow the network to convey the maximal information about input signals drawn from a given distribution. This mapping also produces a set of linear equations for calculating the optimal Ising-model coupling constants, as well as geometric properties that indicate the applicability of the pairwise Ising model. We show that the optimal pairwise interactions are on average zero for Gaussian and uniformly distributed inputs, whereas they are nonzero for inputs approximating those in natural environments. These nonzero network interactions are predicted to increase in strength as the noise in the response functions of each network node increases. This approach also suggests ways for how interactions with unmeasured parts of the network can be inferred from the parameters of response functions for the measured network nodes.

摘要

最近有研究表明,几种类型的生物网络可以用具有成对相互作用的最大熵模型准确描述,该模型也被称为伊辛模型。在此,我们提出一种方法,用于找到输入信号与网络状态之间的最优映射,使网络能够传达来自给定分布的输入信号的最大信息。这种映射还会产生一组线性方程,用于计算最优伊辛模型耦合常数,以及表明成对伊辛模型适用性的几何特性。我们发现,对于高斯分布和均匀分布的输入,最优成对相互作用平均为零,而对于近似自然环境中的输入,它们不为零。预计随着每个网络节点响应函数中的噪声增加,这些非零网络相互作用的强度会增强。该方法还提出了如何从测量网络节点的响应函数参数推断与网络未测量部分相互作用的方法。

相似文献

1
Maximally informative pairwise interactions in networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031914. doi: 10.1103/PhysRevE.80.031914. Epub 2009 Sep 23.
2
Neural decision boundaries for maximal information transmission.
PLoS One. 2007 Jul 25;2(7):e646. doi: 10.1371/journal.pone.0000646.
3
Optimal population coding by noisy spiking neurons.
Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14419-24. doi: 10.1073/pnas.1004906107. Epub 2010 Jul 26.
4
A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro.
J Neurosci. 2008 Jan 9;28(2):505-18. doi: 10.1523/JNEUROSCI.3359-07.2008.
5
Searching for collective behavior in a large network of sensory neurons.
PLoS Comput Biol. 2014 Jan;10(1):e1003408. doi: 10.1371/journal.pcbi.1003408. Epub 2014 Jan 2.
6
Searching for collective behavior in a small brain.
Phys Rev E. 2019 May;99(5-1):052418. doi: 10.1103/PhysRevE.99.052418.
8
Ising model for neural data: model quality and approximate methods for extracting functional connectivity.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 May;79(5 Pt 1):051915. doi: 10.1103/PhysRevE.79.051915. Epub 2009 May 19.
10
Third-order entropy for spatiotemporal neural network characterization.
J Neurophysiol. 2025 Apr 1;133(4):1234-1244. doi: 10.1152/jn.00108.2024. Epub 2025 Mar 17.

引用本文的文献

1
Linking neural responses to behavior with information-preserving population vectors.
Curr Opin Behav Sci. 2019 Oct;29:37-44. doi: 10.1016/j.cobeha.2019.03.004. Epub 2019 May 9.
2
Optimizing Neural Information Capacity through Discretization.
Neuron. 2017 Jun 7;94(5):954-960. doi: 10.1016/j.neuron.2017.04.044.
3
Toward functional classification of neuronal types.
Neuron. 2014 Sep 17;83(6):1329-34. doi: 10.1016/j.neuron.2014.08.040.
4
Information theory of adaptation in neurons, behavior, and mood.
Curr Opin Neurobiol. 2014 Apr;25:47-53. doi: 10.1016/j.conb.2013.11.007. Epub 2013 Dec 14.
5
Dynamics and processing in finite self-similar networks.
J R Soc Interface. 2012 Sep 7;9(74):2131-44. doi: 10.1098/rsif.2011.0840. Epub 2012 Feb 29.
6
Minimal models of multidimensional computations.
PLoS Comput Biol. 2011 Mar;7(3):e1001111. doi: 10.1371/journal.pcbi.1001111. Epub 2011 Mar 24.
7
Optimal population coding by noisy spiking neurons.
Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14419-24. doi: 10.1073/pnas.1004906107. Epub 2010 Jul 26.

本文引用的文献

1
Mutual information between input and output trajectories of biochemical networks.
Phys Rev Lett. 2009 May 29;102(21):218101. doi: 10.1103/PhysRevLett.102.218101. Epub 2009 May 27.
2
Gene-gene cooperativity in small networks.
Biophys J. 2009 Jun 3;96(11):4525-41. doi: 10.1016/j.bpj.2009.03.005.
3
Balanced amplification: a new mechanism of selective amplification of neural activity patterns.
Neuron. 2009 Feb 26;61(4):635-48. doi: 10.1016/j.neuron.2009.02.005.
4
Information capacity of genetic regulatory elements.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 1):011910. doi: 10.1103/PhysRevE.78.011910. Epub 2008 Jul 21.
5
Spatio-temporal correlations and visual signalling in a complete neuronal population.
Nature. 2008 Aug 21;454(7207):995-9. doi: 10.1038/nature07140. Epub 2008 Jul 23.
6
Cooperative nonlinearities in auditory cortical neurons.
Neuron. 2008 Jun 26;58(6):956-66. doi: 10.1016/j.neuron.2008.04.026.
7
A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro.
J Neurosci. 2008 Jan 9;28(2):505-18. doi: 10.1523/JNEUROSCI.3359-07.2008.
8
Excitatory and suppressive receptive field subunits in awake monkey primary visual cortex (V1).
Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):19120-5. doi: 10.1073/pnas.0706938104. Epub 2007 Nov 15.
9
Optimal signal processing in small stochastic biochemical networks.
PLoS One. 2007 Oct 24;2(10):e1077. doi: 10.1371/journal.pone.0001077.
10
Neural decision boundaries for maximal information transmission.
PLoS One. 2007 Jul 25;2(7):e646. doi: 10.1371/journal.pone.0000646.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验