Pillow Jonathan W, Shlens Jonathon, Paninski Liam, Sher Alexander, Litke Alan M, Chichilnisky E J, Simoncelli Eero P
Gatsby Computational Neuroscience Unit, UCL, 17 Queen Square, London WC1N 3AR, UK.
Nature. 2008 Aug 21;454(7207):995-9. doi: 10.1038/nature07140. Epub 2008 Jul 23.
Statistical dependencies in the responses of sensory neurons govern both the amount of stimulus information conveyed and the means by which downstream neurons can extract it. Although a variety of measurements indicate the existence of such dependencies, their origin and importance for neural coding are poorly understood. Here we analyse the functional significance of correlated firing in a complete population of macaque parasol retinal ganglion cells using a model of multi-neuron spike responses. The model, with parameters fit directly to physiological data, simultaneously captures both the stimulus dependence and detailed spatio-temporal correlations in population responses, and provides two insights into the structure of the neural code. First, neural encoding at the population level is less noisy than one would expect from the variability of individual neurons: spike times are more precise, and can be predicted more accurately when the spiking of neighbouring neurons is taken into account. Second, correlations provide additional sensory information: optimal, model-based decoding that exploits the response correlation structure extracts 20% more information about the visual scene than decoding under the assumption of independence, and preserves 40% more visual information than optimal linear decoding. This model-based approach reveals the role of correlated activity in the retinal coding of visual stimuli, and provides a general framework for understanding the importance of correlated activity in populations of neurons.
感觉神经元反应中的统计依赖性既决定了所传递的刺激信息量,也决定了下游神经元提取该信息的方式。尽管各种测量表明存在这种依赖性,但它们的起源以及对神经编码的重要性却知之甚少。在这里,我们使用多神经元尖峰反应模型分析了猕猴伞状视网膜神经节细胞完整群体中相关放电的功能意义。该模型的参数直接拟合生理数据,同时捕捉了群体反应中的刺激依赖性和详细的时空相关性,并对神经编码结构提供了两点见解。首先,群体水平的神经编码比根据单个神经元的变异性所预期的噪声更小:尖峰时间更精确,并且在考虑相邻神经元的尖峰时可以更准确地预测。其次,相关性提供了额外的感觉信息:利用反应相关结构的基于模型的最优解码比在独立假设下的解码多提取20%的关于视觉场景的信息,并且比最优线性解码多保留40%的视觉信息。这种基于模型的方法揭示了相关活动在视觉刺激视网膜编码中的作用,并为理解神经元群体中相关活动的重要性提供了一个通用框架。