Suppr超能文献

通过查普曼-恩斯科格方法和变量变换推导的声子输运方程的稳定性分析。

Stability analysis of phonon transport equations derived via the Chapman-Enskog method and transformation of variables.

作者信息

Banach Zbigniew, Larecki Wieslaw, Zajaczkowski Wojciech

机构信息

Department of Theory of Continuous Media, Polish Academy of Sciences, Institute of Fundamental Technological Research, Pawinskiego 5b, 02-106 Warsaw, Poland.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 1):041114. doi: 10.1103/PhysRevE.80.041114. Epub 2009 Oct 9.

Abstract

Under the assumption of Callaway's model of the Boltzmann-Peierls equation, the Chapman-Enskog method for a phonon gas forms the basis to derive various hydrodynamic equations for the energy density and the drift velocity of interest when normal processes dominate over resistive ones. The first three levels of the expansion (i.e., the zeroth-, first-, and second-order approximations) are satisfactory in that they are entropy consistent and ensure linear stability of the rest state. However, the entropy density contains a weakly nonlocal term, the entropy production is a degenerate function of variables, and the next order in the Chapman-Enskog expansion gives the equations with linearly unstable rest solutions. In the context of Burnett and super-Burnett equations, a similar type of problem was recognized by several authors who proposed different ways to deal with it. Here we report on yet another possible device for obtaining more satisfactory equations. Namely, inspired by the fact that there exists no unique way to truncate the Chapman-Enskog expansion, we combine the Chapman-Enskog procedure with the method of variable transformation and subsequently find a class of epsilon -dependent transformations through which it is possible to derive the second-order equations possessing a local entropy density and nondegenerate expression for the entropy production. Regardless of this result, we also show that although the method cannot be used to construct linearly stable third-order equations, it can be used to make the originally stable first-order equations asymptotically stable.

摘要

在卡洛维(Callaway)的玻尔兹曼 - 派尔斯(Boltzmann - Peierls)方程模型假设下,当正常过程主导电阻过程时,用于声子气体的查普曼 - 恩斯科格(Chapman - Enskog)方法构成了推导能量密度和感兴趣的漂移速度的各种流体动力学方程的基础。展开式的前三个层次(即零阶、一阶和二阶近似)令人满意,因为它们是熵一致的,并确保了静止状态的线性稳定性。然而,熵密度包含一个弱非局部项,熵产生是变量的退化函数,并且查普曼 - 恩斯科格展开中的下一阶给出了具有线性不稳定静止解的方程。在伯内特(Burnett)方程和超伯内特方程的背景下,几位作者认识到了类似类型的问题,并提出了不同的处理方法。在这里,我们报告另一种可能的方法来获得更令人满意的方程。即,受不存在唯一截断查普曼 - 恩斯科格展开的方法这一事实的启发,我们将查普曼 - 恩斯科格程序与变量变换方法相结合,随后找到了一类依赖于ε的变换,通过这些变换有可能推导出具有局部熵密度和熵产生的非退化表达式的二阶方程。尽管有这个结果,我们还表明,虽然该方法不能用于构建线性稳定的三阶方程,但它可以用于使原本稳定的一阶方程渐近稳定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验