Kamil S M, Bhattacharjee A K, Adhikari R, Menon Gautam I
The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600 113, India.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 1):041705. doi: 10.1103/PhysRevE.80.041705. Epub 2009 Oct 21.
We revisit the classic problem of the structure of the isotropic-nematic interface within Ginzburg-Landau-de Gennes theory, refining previous analytic treatments of biaxiality at the interface. We compare our analysis with numerical results obtained through a highly accurate spectral collocation scheme for the solution of the Landau-Ginzburg-de Gennes equations. In comparison to earlier work, we obtain improved agreement with numerics for both the uniaxial and biaxial profiles, accurate asymptotic results for the decay of biaxial order on both nematic and isotropic sides of the interface, and accurate fits to data from density-functional approaches to this problem.
我们重新审视了金兹堡 - 朗道 - 德热纳理论中各向同性 - 向列相界面结构的经典问题,完善了先前对界面处双轴性的解析处理。我们将我们的分析与通过用于求解朗道 - 金兹堡 - 德热纳方程的高精度谱配置方案获得的数值结果进行了比较。与早期工作相比,我们在单轴和双轴分布方面都与数值结果取得了更好的一致性,得到了界面向列相和各向同性侧双轴序衰减的精确渐近结果,以及对该问题密度泛函方法数据的精确拟合。